Skip to main content
Log in

Local pH mapping in the cell adhesion nano-interfaces on a pH-responsive fluorescence-dye-immobilized substrate

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Cell-substrate adhesion nano-interfaces can, in principle, exhibit a spatial distribution of local pH values under the influence of the weakly acidic microenvironment of glycocalyx grafted on lipid bilayer cell membrane which is compressed and closely attached to culture substrate in the vicinity of integrin-adhesion complexes. However, a simple local pH distribution imaging methodology has not been developed. In this study, to visualize the local pH distribution at the cell adhesion interface, we prepared glass substrates chemically modified with a pH-responsive fluorescent dye fluorescein isothiocyanate (FITC), observed the distribution of FITC fluorescence intensity at the adhesion interface of fibroblast (NIH/3T3) and cancer cells (HeLa), and compared the FITC images with the observed distribution of focal adhesions. FITC images were converted to pH mapping based on the pH-fluorescence calibration data of surface-immobilized FITC pre-measured in different pH media, which showed significantly larger regions with lowered pH level (6.8–7.0) from outside the cell (pH 7.4) were observed at the thick inner periphery of HeLa cells while 3T3 cells exhibited smaller lowered pH regions at the thin periphery. The lowered pH regions overlapped with many focal adhesions, and image analysis showed that larger focal adhesions tend to possess more lowered pH sites inside, reflecting enhanced glycocalyx compression due to accumulated integrin-adhesion ligand binding. This tendency was stronger for HeLa than for 3T3 cells. The role of glycocalyx compression and the pH reduction at the cell adhesive interface is discussed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article [and/or] its supplementary materials.

References

  1. M. Bachmann, S. Kukkurainen, V.P. Hytönen, B. Wehrle-Haller, Physiol. Rev. 99, 1655 (2019)

    Article  CAS  PubMed  Google Scholar 

  2. Y.A. Kadry, D.A. Calderwood, Biochim. Biophys. Acta Biomembr. 1862, 183206 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. M.R. Chastney, J.R.W. Conway, J. Ivaska, Curr. Biol. 31, R536 (2021)

    Article  CAS  PubMed  Google Scholar 

  4. P. Kanchanawong, D.A. Calderwood, Nat. Rev. Mol. Cell Biol. (2022). https://doi.org/10.1038/s41580-022-00531-5

  5. K. Burridge, E.S. Wittchen, J. Cell Biol. 200, 9 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. P.W. Oakes, Y. Beckham, J. Stricker, M.L. Gardel, J. Cell Biol. 196, 363 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. A.K. Harris, P. Wild, D. Stopak, Science 208, 177 (1980)

    Article  CAS  PubMed  Google Scholar 

  8. V. Maruthamuthu, B. Sabass, U.S. Schwarz, M.L. Gardel, Proc. Natl. Acad. Sci. USA 108, 4708 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. R. Changede, X. Xu, F. Margadant, M.P. Sheetz, Dev. Cell 35, 614 (2015)

    Article  CAS  PubMed  Google Scholar 

  10. J. Chin-Hun Kuo, J.G. Gandhi, R.N. Zia, M.J. Paszek, Nat. Phys. 14, 658 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  11. A.L. Barker, O. Konopatskaya, C.R. Neal, J.V. Macpherson, J.L. Whatmore, C.P. Winlove, P.R. Unwin, A.C. Shore, Phys. Chem. Chem. Phys. 6, 1006 (2004)

    Article  CAS  Google Scholar 

  12. C.L. Hattrup, S.J. Gendler, Annu. Rev. Physiol. 70, 431 (2008)

    Article  CAS  PubMed  Google Scholar 

  13. M. Nieuwdorp, M.C. Meuwese, H.L. Mooij, C. Ince, L.N. Broekhuizen, J.J.P. Kastelein, E.S.G. Stroes, H. Vink, J. Appl. Physiol. 104, 845 (2008)

    Article  PubMed  Google Scholar 

  14. M.J. Paszek, C.C. DuFort, O. Rossier, R. Bainer, J.K. Mouw, K. Godula, J.E. Hudak, J.N. Lakins, A.C. Wijekoon, L. Cassereau, M.G. Rubashkin, M.J. Magbanua, K.S. Thorn, M.W. Davidson, H.S. Rugo, J.W. Park, D.A. Hammer, G. Giannone, C.R. Bertozzi, V.M. Weaver, Nature 511, 319 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. J.E. Schnitzer, Yale J. Biol. Med. 61, 427 (1988)

    CAS  PubMed  PubMed Central  Google Scholar 

  16. J. Slavik, Fluorescent probes in cellular and molecularbiology (CRC Press, 1994)

    Google Scholar 

  17. M. Anderson, A. Moshnikova, D.M. Engelman, Y.K. Reshetnyak, O.A. Andreev, Proc. Natl. Acad. Sci. USA 113, 8177 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. C. Stock, M. Mueller, H. Kraehling, S. Mally, J. Noël, C. Eder, A. Schwab, Cell. Physiol. Biochem. 20, 679 (2007)

    Article  CAS  PubMed  Google Scholar 

  19. H. Krähling, S. Mally, J.A. Eble, J. Noël, A. Schwab, C. Stock, Pflugers Arch. 458, 1069 (2009)

    Article  PubMed  Google Scholar 

  20. B. Geiger, K.M. Yamada, Cold Spring Harb. Perspect. Biol. 3, a005033 (2011)

    Article  PubMed  PubMed Central  Google Scholar 

  21. K. Lin, R.J. Asaro, Biophysica 2, 34 (2022)

    Article  Google Scholar 

  22. S. Sabri, M. Soler, C. Foa, A. Pierres, A. Benoliel, P. Bongrand, J. Cell Sci. 113, 1589 (2000)

    Article  CAS  PubMed  Google Scholar 

  23. N. Kanyo, K.D. Kovacs, A. Saftics, I. Szekacs, B. Peter, A.R. Santa-Maria, F.R. Walter, A. Dér, M.A. Deli, R. Horvath, Sci. Rep. 10, 22422 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. L. Li, J. Ji, F. Song, J. Hu, J. Mol. Biol. (2022). https://doi.org/10.1016/j.jmb.2022.167787

    Article  PubMed  PubMed Central  Google Scholar 

  25. G. Gamse, H.G. Fromme, H. Kresse, Biochim. Biophys. Acta 544, 514 (1978)

    Article  CAS  PubMed  Google Scholar 

  26. A. Oohira, T.N. Wight, P. Bornstein, J. Biol. Chem. 258, 2014 (1983)

    Article  CAS  PubMed  Google Scholar 

  27. J. Takagi, H.P. Erickson, T.A. Springer, Nat. Struct. Biol. 8, 412 (2001)

    Article  CAS  PubMed  Google Scholar 

  28. J. Takagi, B.M. Petre, T. Walz, T.A. Springer, Cell 110, 599 (2002)

    Article  CAS  PubMed  Google Scholar 

  29. S. Tadokoro, S.J. Shattil, K. Eto, V. Tai, R.C. Liddington, J.M. de Pereda, M.H. Ginsberg, D.A. Calderwood, Science 302, 103 (2003)

    Article  CAS  PubMed  Google Scholar 

  30. B.H. Luo, T.A. Springer, J. Takagi, Proc. Natl. Acad. Sci. USA 100, 2403 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. R.K. Paradise, D.A. Lauffenburger, K.J. Van Vliet, PLoS One 19, e15746 (2011)

    Article  Google Scholar 

  32. M.A. Hollingsworth, B.J. Swanson, Nat. Rev. Cancer 4, 45 (2004)

    Article  CAS  PubMed  Google Scholar 

  33. G.K. Xu, J. Qian, J. Hu, Soft Matter 12, 4572 (2016)

    Article  CAS  PubMed  Google Scholar 

  34. S. Hakomori, K. Handa, Glycoconj. J. 32, 1 (2015)

    Article  CAS  PubMed  Google Scholar 

  35. Y.J. Liang, Y. Ding, S.B. Levery, M. Lobaton, K. Handa, S. Hakomori, Proc. Natl. Acad. Sci. USA 110, 4968 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. C. Mandal, S. Sarkar, U. Chatterjee, R. Schwartz-Albiez, C. Mandal, Int. J. Biochem. Cell Biol. 53, 162 (2014)

    Article  CAS  PubMed  Google Scholar 

  37. M. Kundu, B. Mahata, A. Banerjee, S. Chakraborty, S. Debnath, S.S. Ray, Z. Gosh, K. Biswas, Biochim. Biophys. Acta 1863, 1472 (2016)

    Article  CAS  PubMed  Google Scholar 

  38. M. Oe, K. Miki, H. Mu, H. Harada, A. Morinibu, K. Ohe, Tetrahedron Lett. 59, 3317 (2018)

    Article  CAS  Google Scholar 

  39. A. Kurutos, Y. Shindo, Y. Hiruta, K. Oka, D. Citterio, Dyes Pigm. 181, 108611 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI grant numbers JP19H05627, JP21K18326, and JP21KK0127. A part of this work was supported by “Advanced Research Infrastructure for Materials and Nanotechnology in Japan (ARIM)” of the Ministry of Education, Culture, Sports, Science and Technology (MEXT). Grant Number JPMXP1222KU1038.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoru Kidoaki.

Supplementary Information

Below is the link to the electronic supplementary material. The authors confirm that the data supporting the findings of this study are available within the article [and/or] its supplementary materials.

Supplementary file1 (PDF 1210 KB)

Supplementary file2 (MP4 311 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masaike, S., Tsuji, Y. & Kidoaki, S. Local pH mapping in the cell adhesion nano-interfaces on a pH-responsive fluorescence-dye-immobilized substrate. ANAL. SCI. 39, 347–355 (2023). https://doi.org/10.1007/s44211-022-00239-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44211-022-00239-8

Keywords

Navigation