Abstract
The determination of phosphate ions in biological testing is critical for environmental safety. A reliable and accurate method is required to measure the true phosphate ion concentrations; in this regard, the electrochemical method is preferable because of its simple operation, fast response, and high sensitivity. By compiling existing electroanalytical techniques, researchers can compare the advantages and disadvantages of each method. This review examines the progress and recent advances in electrochemical sensing strategies adapted for the determination of phosphate ions in the environmental and during biological monitoring. We first discuss the history of phosphorus and the development of methods to detect phosphates. The recognition elements of phosphate ion sensors for environmental applications include metal-based, nanomaterial-based, carbon-based, and enzymatic electrodes. Phosphate determination in biological samples, such as blood serum, drugs, and other biological fluids, such as urine and saliva, as well as phosphate esters, is also discussed. The final part of our review addresses the current challenges that phosphate sensing technology faces and illustrates future opportunities for more reliable phosphate detection.
Graphical abstract
Similar content being viewed by others
References
M. Butusov, A. Jernelöv, Phosphorus: An element that could have been called Lucifer, vol. 9 (Springer, New York, 2013), p.v
K.B. Föllmi, Earth Sci. Rev. 40, 57 (1996)
M.B. Emelko, M. Stone, U. Silins, D. Allin, A.L. Collins, C.H. Williams, A.M. Martens, K.D. Bladon, Glob. Chang. Biol. 22, 1168 (2016)
B. Grizzetti, F. Bouraoui, A. Aloe, Glob. Chang. Biol. 18, 776 (2012)
F. Krafft, Angew. Chem. Int. Ed. Engl. 8, 660 (1969)
R.W. Scholz, A.H. Roy, D.T. Hellums, Sustainable phosphorus management: a transdisciplinary challenge, in Sustainable phosphorus management. (Springer, Dordrecht, 2014), pp.1–128
J.A. Barnett, Yeast 20, 510 (2003)
D.S. Baldwin, J. Environ. Chem. 10, 439 (2013)
M.E. Gales Jr., E.C. Julian, R.C. Kroner, J. Am. WATER Work. Assoc. 58, 1363 (1966)
A. Sathasivan, S. Ohgaki, K. Yamamoto, N. Kamiko, Water Sci. Technol. 35, 37 (1997)
R.G. Gerritse, R. Vriesema, J. Agric. Sci. 102, 159 (1984)
S. Levitus, M.E. Conkright, J.L. Reid, R.G. Najjar, A. Mantyla, Prog. Oceanogr. 31, 246 (1993)
K. McLaughlin, C. Kendall, S.R. Silva, M. Young, A. Paytan, J. Geophys. Res. Biogeosci. 111, 1 (2006)
C. Alewell, B. Ringeval, C. Ballabio, D.A. Robinson, P. Panagos, P. Borrelli, Nat. Commun. 11, 2 (2020)
S.O. Engblom, Biosens. Bioelectron. 13, 981 (1998)
N.C. Hansen, T.C. Daniel, A.N. Sharpley, J.L. Lemunyon, J. Soil Water Conserv. 57, 408 (2002)
M. Peacock, Calcif. Tissue Int. 108, 4 (2021)
M. Tonelli, F. Sacks, M. Pfeffer, Z. Gao, G. Curhan, Circ. J. 112, 2627 (2005)
S. Vimalraj, Gene 754, 7 (2020)
L. Gmelin, Handbuch der anorganischen Chemie: Cohäsion, Adhäsion, Affinität, unwägbare Stoffe und unorganische Verbindungen der nichtmetallischen wägbaren Stoffe, Vol. 1. (Winter, 1852), 559–562.
A.P. Briggs, J. Biol. Chem. 53, 14 (1922)
C.H. Fiske, Y. Subbarow, J. Biol. Chem. 66, 375 (1925)
J. Murphy, J.P. Riley, Anal. Chim. Acta 27, 31 (1962)
P.P. Van Veldhoven, G.P. Mannaerts, Anal. Biochem. 161, 45 (1987)
L.A. Shaver, J. Chem. Educ. 85, 1097 (2008)
L. Szekers, E. Kardos, G.L. Szekeres, Microchem. J. 11, 1 (1966)
P.J. Antony, S. Karthikeyan, C.S.P. Iyer, J. Chromatogr. B. 767, 363 (2002)
A.T. Lawal, S.B. Adeloju, Talanta 114, 193 (2013)
A.O. Fadiran, S.C. Dlamini, A. Mavuso, Bull. Chem. Soc. Ethiop. 22, 198 (2008)
Z. Yuan, S. Jiang, H. Sheng, X. Liu, H. Hua, X. Liu, Y. Zhang, Environ. Sci. Technol. 50, 8929 (2018)
C. Forano, H. Farhat, C. Mousty, Curr. Opin. Electrochem. 11, 55 (2018)
World Health Organization, International standards for drinking-water, 2nd edn. (World Health Organization, Geneva, 1963), https://apps.who.int/iris/bitstream/handle/10665/205104/205104_eng.pdf?sequence=2. Accessed 27 August 2022
I. Novozamsky, W.H. Van Riemsdijk, Anal. Chim. Acta 85, 41 (1976)
D. Xiao, H.Y. Yuan, J. Li, R.Q. Yu, J. Anal. Chem. 67, 288 (1995)
R. Marco, P. Alexander, Anal. Commun. 34, 93 (1997)
J.H. Lee, W.H. Lee, P.L. Bishop, I. Papautsky, J. Micromech. Microeng. 19, 1 (2009)
G. Zhao, H. Wen, Z. Dai, Y. Nie, J. Jiang, X. Xu, M. Ying, Z. Hu, H. Xu, Electrocatalysis 13, 641 (2022)
X. Ding, M. Behbahani, C. Gruden, Y. Seo, J. Environ. Manage. 160, 193 (2015)
C. Warwick, A. Guerreiro, A. Soares, Biosens. Bioelectron. 41, 6 (2013)
Y. Zhang, P.S. Cremer, Curr. Opin. Chem. Biol. 10, 660 (2006)
E.M. Zahran, V. Gavalas, M. Valiente, L.G. Bachas, Anal. Chem. 82, 3623 (2010)
K. Xu, Y. Kitazumi, K. Kano, O. Shirai, Electrochim. Acta. 282, 242 (2018)
A. Prasad, S.P. Sahu, S.K. Figueiredo Stofela, A. Chaichi, S.M.A. Hasan, W. Bam, K. Maiti, K.M. McPeak, G.L. Liu, M.R. Gartia, ACS Omega 6, 11297 (2021)
R.K. Meruva, M.E. Meyerhoff, Anal. Chem. 68, 2022 (1996)
G. Siebielec, A. Ukalska-Jaruga, P. Kidd, Bioavailability of trace elements in soils amended with high-phosphate materials, in Phosphate in Soils. (CRC Press, Boca Raton, 2018), pp.254–285
C. Barus, I. Romanytsia, N. Striebig, V. Garçon, Talanta 160, 417 (2016)
Y. Li, T. Jiang, X. Yu, H. Yang, J. Electrochem. Soc. 163, B479 (2016)
U. Sivasankaran, L. Reinke, S.K. Anand, K. Malecka, K.G. Kumar, H. Radecka, S. Kubik, J. Radecki, Sens. Actuators B: Chem. 321, 128474 (2020)
K. Xu, B. Wu, J. Wan, Y. Li, M. Li, Electrochim. Acta 412, 140065 (2022)
K. Xu, Y. Li, M. Li, ACS Omega 6, 13795 (2021)
V. Patel, P. Kruse, P.R. Selvaganapathy, J. Electrochem. Soc. 169, 077505 (2022)
E. Moumen, L. Bazzi, S. El Hankari, Coord. Chem. Rev. 455, 214376 (2022)
Y. Bai, J.H. Tong, C. Bian, S.H. Xia, Key Eng. Mater. 483, 559 (2011)
X. Wang, X. Ma, J. Church, S. Jung, Y. Son, W.H. Lee, H.J. Cho, Mater. Lett. 192, 107 (2017)
K. Kargosha, P. Hemmatkhah, S.H. Ahmadi, Anal. Bioanal. Electrochem. 9, 521 (2017)
C. Topcu, B. Caglar, A. Onder, F. Coldur, S. Caglar, E.K. Guner, O. Cubuk, A. Tabak, Mater. Res. Bull. 98, 288 (2018)
M.F. Kabir, M.T. Rahman, A. Gurung, Q. Qiao, IEEE Sens. J. 18, 3480 (2018)
S.R. Sari, M. Tsushida, T. Sato, M. Tominaga, Adv. Mater. 3, 2018 (2022)
B.I. Kharisov, O.V. Kharissova, Carbon Allotropes: Metal-Complex Chemistry, Properties and Applications (Springer, Cham, 2019), pp.35–109
V.K. Thakur, M.K. Thakur, Chemical Functionalization of Carbon Nanomaterials (CRC Press, Warentown, 2018), pp.5–13
R. Rauti, M. Musto, S. Bosi, M. Prato, L. Ballerini, Carbon 143, 431 (2019)
A.G. Whittaker, P.L. Kintner, Science 200, 763 (1969)
A.V. Kolliopoulos, D.K. Kampouris, C.E. Banks, Anal. Chem. 87, 4269 (2015)
S. Cinti, D. Talarico, G. Palleschi, D. Moscone, F. Arduini, Anal. Chim. Acta 919, 78 (2016)
F.M. Shimizu, A.M. Pasqualeti, C.Y. Nicoliche, A.L. Gobbi, M. Santhiago, R.S. Lima, ACS Sens. 6, 3125 (2021)
H. Wei, D. Pan, Z. Zhou, H. Han, R. Zhu, Ecotoxicol. Environ. Saf. 221, 1 (2021)
L. Alvarado-Ramírez, M. Rostro-Alanis, J. Rodríguez-Rodríguez, J.E. Sosa-Hernández, E.M. Melchor-Martínez, H.M. Iqbal, R. Parra-Saldívar, Biosensors 11, 410 (2021)
S. Berchmans, T.B. Issa, P. Singh, Anal. Chim. Acta 4, 35 (2012)
S. Korkut, S. Göl, M.S. Kilic, Electroanalysis 32, 271 (2020)
E. Watanabe, H. Endo, K. Toyama, Biosensors 3, 297 (1987)
G. Kopiec, K. Starzec, J. Kochana, T.P. Kinnunen-Skidmore, W. Schuhmann, W.H. Campbell, A. Ruff, N. Plumeré, Biosens. Bioelectron. 117, 505 (2018)
N. Conrath, B. Gründig, K. Cammann, Anal. Chim. Acta 309, 47 (1995)
C. Mousty, S. Cosnier, D. Shan, S. Mu, Anal. Chim. Acta 443, 1 (2001)
K. IkebukuroA, R. Nishida, H. Yamamoto, Y. Arikawa, H. Nakamura, M. Suzuki, I. Kubo, T. Takeuchi, I. Karube, J. Biotechnol. 48, 71 (1996)
C.I. Bagnis, S. Karie, G. Deray, M. Essig, Antivir. Ther. 14, 482 (2009)
M. Levi, M. Popovtzer, in Atlases of Diseases of the Kidney. ed. by R.W. Schrier (Wiley-Blackwell, Hoboken, 1999), pp.1–14
H. Komaba, M. Fukagawa, Kidney Int. 90, 755 (2016)
A.K. Ghosh, S.R. Joshi, J. Assoc. Physicians India 25, 1 (2008)
J.M. Pettifor, Eur. J. Pediatr. 167, 494 (2008)
S. Khoshniat, A. Bourgine, M. Julien, P. Weiss, J. Guicheux, L. Beck, Cell. Mol. Life Sci. 68, 206 (2011)
Y.N. Berner, M. Shike, Annu. Rev. Nutr. 8, 126 (1988)
D.G. Hardie, F.A. Rossand, S.A. Hawley, Nat. Rev. Mol. Cell. Biol. 13, 251 (2012)
D. Zheng, D.S. Seferos, D.A. Giljohann, P.C. Patel, C.A. Mirkin, Nano Lett. 9, 3258 (2009)
H. Zhang, Y. Han, Y. Guo, C. Dong, J. Mater. Chem. 22, 23901 (2012)
S.K. Kim, D.H. Lee, J.I. Hong, J. Yoon, Acc. Chem. Res. 42, 24 (2009)
M.L. Hartman, F. Groppo, M. Ohnishi, J.M. Goodson, H. Hasturk, M. Tavares, T. Yaskell, C. Floros, K. Behbehani, M.S. Razzaque, in Phosphate and Vitamin D Chronic Kidney Disease. ed. by M.S. Razzaque (Karger Publishers, Basel, 2013), pp.138–148
M.S. Calvo, J. Uribarri, Semin. Dial. 26, 55 (2013)
O. Benini, C. D’Alessandro, D. Gianfaldoni, A. Cupisti, J. Ren. Nutr. 2, 146 (2011)
Y. Sabbagh, Clin. Nephrol. 79, 58 (2013)
I. Kubo, Anal. Bioanal. Chem. 372, 273 (2002)
M.A. Rahman, D.S. Park, S.C. Chang, C.J. McNeil, Y.B. Shim, Biosens. Bioelectron. 21, 1116 (2006)
J. Zhang, Y. Bian, D. Liu, Z. Zhu, Y. Shao, M. Li, J. Anal. Chem. 91, 14666 (2019)
S. Pourbeyram, M. Soltanpour, S. Fathalipour, J. Anal. Sci. Technol. 35, 739 (2019)
M. Mazloum-Ardakani, N. Sadri, V. Eslami, Electroanalysis 32, 1148 (2020)
J. Xu, Z. Gao, X. Dou, Y.Y. Song, J. Electroanal. Chem. 897, 1 (2021)
F. Schubert, R. Renneberg, F.W. Scheller, L. Kirstein, J. Anal. Chem. 56, 1677 (1984)
L. Gilbert, A.T.A. Jenkins, S. Browning, J.P. Hart, Sens. Actuators B: Chem. 160, 1322 (2011)
L. Campanella, M. Cordatore, F. Mazzei, M. Tomassetti, J. Pharm. Biomed. Anal. 8, 711 (1990)
Q. Chen, S. Sun, G. Ran, C. Wang, W. Gu, Q. Song, J. Anal. Sci. Technol. 37, 1247 (2021)
Z. Zou, J. Han, A. Jang, P.L. Bishop, C.H. Ahn, Biosens. Bioelectron. 22, 1902 (2007)
S. Ikeno, T. Haruyama, Sens. Actuators B: Chem. 108, 608 (2005)
N. Manjubaashini, P.J. Sephra, K. Nehru, M. Sivakumar, T.D. Thangadurai, Sens. Actuators B: Chem. 281, 1054 (2019)
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
There are no competing interest to declare.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Sari, S.R., Tominaga, M. Progress and current trends in the electrochemical determination of phosphate ions for environmental and biological monitoring applications. ANAL. SCI. 39, 629–642 (2023). https://doi.org/10.1007/s44211-022-00228-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s44211-022-00228-x