Skip to main content
Log in

Progress and current trends in the electrochemical determination of phosphate ions for environmental and biological monitoring applications

  • Special Issue: Review
  • Novel Analytical Approaches towards SDGs
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

The determination of phosphate ions in biological testing is critical for environmental safety. A reliable and accurate method is required to measure the true phosphate ion concentrations; in this regard, the electrochemical method is preferable because of its simple operation, fast response, and high sensitivity. By compiling existing electroanalytical techniques, researchers can compare the advantages and disadvantages of each method. This review examines the progress and recent advances in electrochemical sensing strategies adapted for the determination of phosphate ions in the environmental and during biological monitoring. We first discuss the history of phosphorus and the development of methods to detect phosphates. The recognition elements of phosphate ion sensors for environmental applications include metal-based, nanomaterial-based, carbon-based, and enzymatic electrodes. Phosphate determination in biological samples, such as blood serum, drugs, and other biological fluids, such as urine and saliva, as well as phosphate esters, is also discussed. The final part of our review addresses the current challenges that phosphate sensing technology faces and illustrates future opportunities for more reliable phosphate detection.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Copyright 2019 American Chemical Society

Similar content being viewed by others

References

  1. M. Butusov, A. Jernelöv, Phosphorus: An element that could have been called Lucifer, vol. 9 (Springer, New York, 2013), p.v

    Google Scholar 

  2. K.B. Föllmi, Earth Sci. Rev. 40, 57 (1996)

    Article  Google Scholar 

  3. M.B. Emelko, M. Stone, U. Silins, D. Allin, A.L. Collins, C.H. Williams, A.M. Martens, K.D. Bladon, Glob. Chang. Biol. 22, 1168 (2016)

    Article  PubMed  Google Scholar 

  4. B. Grizzetti, F. Bouraoui, A. Aloe, Glob. Chang. Biol. 18, 776 (2012)

    Article  Google Scholar 

  5. F. Krafft, Angew. Chem. Int. Ed. Engl. 8, 660 (1969)

    Article  CAS  PubMed  Google Scholar 

  6. R.W. Scholz, A.H. Roy, D.T. Hellums, Sustainable phosphorus management: a transdisciplinary challenge, in Sustainable phosphorus management. (Springer, Dordrecht, 2014), pp.1–128

    Chapter  Google Scholar 

  7. J.A. Barnett, Yeast 20, 510 (2003)

    Google Scholar 

  8. D.S. Baldwin, J. Environ. Chem. 10, 439 (2013)

    Article  CAS  Google Scholar 

  9. M.E. Gales Jr., E.C. Julian, R.C. Kroner, J. Am. WATER Work. Assoc. 58, 1363 (1966)

    Article  CAS  Google Scholar 

  10. A. Sathasivan, S. Ohgaki, K. Yamamoto, N. Kamiko, Water Sci. Technol. 35, 37 (1997)

    Article  CAS  Google Scholar 

  11. R.G. Gerritse, R. Vriesema, J. Agric. Sci. 102, 159 (1984)

    Article  CAS  Google Scholar 

  12. S. Levitus, M.E. Conkright, J.L. Reid, R.G. Najjar, A. Mantyla, Prog. Oceanogr. 31, 246 (1993)

    Article  Google Scholar 

  13. K. McLaughlin, C. Kendall, S.R. Silva, M. Young, A. Paytan, J. Geophys. Res. Biogeosci. 111, 1 (2006)

    Article  Google Scholar 

  14. C. Alewell, B. Ringeval, C. Ballabio, D.A. Robinson, P. Panagos, P. Borrelli, Nat. Commun. 11, 2 (2020)

    Article  Google Scholar 

  15. S.O. Engblom, Biosens. Bioelectron. 13, 981 (1998)

    Article  CAS  PubMed  Google Scholar 

  16. N.C. Hansen, T.C. Daniel, A.N. Sharpley, J.L. Lemunyon, J. Soil Water Conserv. 57, 408 (2002)

    Google Scholar 

  17. M. Peacock, Calcif. Tissue Int. 108, 4 (2021)

    Article  Google Scholar 

  18. M. Tonelli, F. Sacks, M. Pfeffer, Z. Gao, G. Curhan, Circ. J. 112, 2627 (2005)

    Article  CAS  Google Scholar 

  19. S. Vimalraj, Gene 754, 7 (2020)

    Article  Google Scholar 

  20. L. Gmelin, Handbuch der anorganischen Chemie: Cohäsion, Adhäsion, Affinität, unwägbare Stoffe und unorganische Verbindungen der nichtmetallischen wägbaren Stoffe, Vol. 1. (Winter, 1852), 559–562.

  21. A.P. Briggs, J. Biol. Chem. 53, 14 (1922)

    Article  Google Scholar 

  22. C.H. Fiske, Y. Subbarow, J. Biol. Chem. 66, 375 (1925)

    Article  CAS  Google Scholar 

  23. J. Murphy, J.P. Riley, Anal. Chim. Acta 27, 31 (1962)

    Article  CAS  Google Scholar 

  24. P.P. Van Veldhoven, G.P. Mannaerts, Anal. Biochem. 161, 45 (1987)

    Article  PubMed  Google Scholar 

  25. L.A. Shaver, J. Chem. Educ. 85, 1097 (2008)

    Article  CAS  Google Scholar 

  26. L. Szekers, E. Kardos, G.L. Szekeres, Microchem. J. 11, 1 (1966)

    Article  Google Scholar 

  27. P.J. Antony, S. Karthikeyan, C.S.P. Iyer, J. Chromatogr. B. 767, 363 (2002)

    Article  CAS  Google Scholar 

  28. A.T. Lawal, S.B. Adeloju, Talanta 114, 193 (2013)

    Google Scholar 

  29. A.O. Fadiran, S.C. Dlamini, A. Mavuso, Bull. Chem. Soc. Ethiop. 22, 198 (2008)

    Article  Google Scholar 

  30. Z. Yuan, S. Jiang, H. Sheng, X. Liu, H. Hua, X. Liu, Y. Zhang, Environ. Sci. Technol. 50, 8929 (2018)

    Google Scholar 

  31. C. Forano, H. Farhat, C. Mousty, Curr. Opin. Electrochem. 11, 55 (2018)

    Article  CAS  Google Scholar 

  32. World Health Organization, International standards for drinking-water, 2nd edn. (World Health Organization, Geneva, 1963), https://apps.who.int/iris/bitstream/handle/10665/205104/205104_eng.pdf?sequence=2. Accessed 27 August 2022

  33. I. Novozamsky, W.H. Van Riemsdijk, Anal. Chim. Acta 85, 41 (1976)

    Article  CAS  Google Scholar 

  34. D. Xiao, H.Y. Yuan, J. Li, R.Q. Yu, J. Anal. Chem. 67, 288 (1995)

    Article  CAS  Google Scholar 

  35. R. Marco, P. Alexander, Anal. Commun. 34, 93 (1997)

    Article  Google Scholar 

  36. J.H. Lee, W.H. Lee, P.L. Bishop, I. Papautsky, J. Micromech. Microeng. 19, 1 (2009)

    Google Scholar 

  37. G. Zhao, H. Wen, Z. Dai, Y. Nie, J. Jiang, X. Xu, M. Ying, Z. Hu, H. Xu, Electrocatalysis 13, 641 (2022)

    Article  CAS  Google Scholar 

  38. X. Ding, M. Behbahani, C. Gruden, Y. Seo, J. Environ. Manage. 160, 193 (2015)

    Article  CAS  PubMed  Google Scholar 

  39. C. Warwick, A. Guerreiro, A. Soares, Biosens. Bioelectron. 41, 6 (2013)

    Article  Google Scholar 

  40. Y. Zhang, P.S. Cremer, Curr. Opin. Chem. Biol. 10, 660 (2006)

    Article  Google Scholar 

  41. E.M. Zahran, V. Gavalas, M. Valiente, L.G. Bachas, Anal. Chem. 82, 3623 (2010)

    Google Scholar 

  42. K. Xu, Y. Kitazumi, K. Kano, O. Shirai, Electrochim. Acta. 282, 242 (2018)

    Article  CAS  Google Scholar 

  43. A. Prasad, S.P. Sahu, S.K. Figueiredo Stofela, A. Chaichi, S.M.A. Hasan, W. Bam, K. Maiti, K.M. McPeak, G.L. Liu, M.R. Gartia, ACS Omega 6, 11297 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. R.K. Meruva, M.E. Meyerhoff, Anal. Chem. 68, 2022 (1996)

    Article  CAS  PubMed  Google Scholar 

  45. G. Siebielec, A. Ukalska-Jaruga, P. Kidd, Bioavailability of trace elements in soils amended with high-phosphate materials, in Phosphate in Soils. (CRC Press, Boca Raton, 2018), pp.254–285

    Google Scholar 

  46. C. Barus, I. Romanytsia, N. Striebig, V. Garçon, Talanta 160, 417 (2016)

    Article  CAS  PubMed  Google Scholar 

  47. Y. Li, T. Jiang, X. Yu, H. Yang, J. Electrochem. Soc. 163, B479 (2016)

    Article  CAS  Google Scholar 

  48. U. Sivasankaran, L. Reinke, S.K. Anand, K. Malecka, K.G. Kumar, H. Radecka, S. Kubik, J. Radecki, Sens. Actuators B: Chem. 321, 128474 (2020)

    Article  CAS  Google Scholar 

  49. K. Xu, B. Wu, J. Wan, Y. Li, M. Li, Electrochim. Acta 412, 140065 (2022)

    Article  CAS  Google Scholar 

  50. K. Xu, Y. Li, M. Li, ACS Omega 6, 13795 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. V. Patel, P. Kruse, P.R. Selvaganapathy, J. Electrochem. Soc. 169, 077505 (2022)

    Article  Google Scholar 

  52. E. Moumen, L. Bazzi, S. El Hankari, Coord. Chem. Rev. 455, 214376 (2022)

    Article  CAS  Google Scholar 

  53. Y. Bai, J.H. Tong, C. Bian, S.H. Xia, Key Eng. Mater. 483, 559 (2011)

    Article  CAS  Google Scholar 

  54. X. Wang, X. Ma, J. Church, S. Jung, Y. Son, W.H. Lee, H.J. Cho, Mater. Lett. 192, 107 (2017)

    Article  CAS  Google Scholar 

  55. K. Kargosha, P. Hemmatkhah, S.H. Ahmadi, Anal. Bioanal. Electrochem. 9, 521 (2017)

    CAS  Google Scholar 

  56. C. Topcu, B. Caglar, A. Onder, F. Coldur, S. Caglar, E.K. Guner, O. Cubuk, A. Tabak, Mater. Res. Bull. 98, 288 (2018)

    Article  CAS  Google Scholar 

  57. M.F. Kabir, M.T. Rahman, A. Gurung, Q. Qiao, IEEE Sens. J. 18, 3480 (2018)

    Article  CAS  Google Scholar 

  58. S.R. Sari, M. Tsushida, T. Sato, M. Tominaga, Adv. Mater. 3, 2018 (2022)

    Article  CAS  Google Scholar 

  59. B.I. Kharisov, O.V. Kharissova, Carbon Allotropes: Metal-Complex Chemistry, Properties and Applications (Springer, Cham, 2019), pp.35–109

    Book  Google Scholar 

  60. V.K. Thakur, M.K. Thakur, Chemical Functionalization of Carbon Nanomaterials (CRC Press, Warentown, 2018), pp.5–13

    Google Scholar 

  61. R. Rauti, M. Musto, S. Bosi, M. Prato, L. Ballerini, Carbon 143, 431 (2019)

    Article  Google Scholar 

  62. A.G. Whittaker, P.L. Kintner, Science 200, 763 (1969)

    Article  Google Scholar 

  63. A.V. Kolliopoulos, D.K. Kampouris, C.E. Banks, Anal. Chem. 87, 4269 (2015)

    Article  CAS  PubMed  Google Scholar 

  64. S. Cinti, D. Talarico, G. Palleschi, D. Moscone, F. Arduini, Anal. Chim. Acta 919, 78 (2016)

    Article  CAS  PubMed  Google Scholar 

  65. F.M. Shimizu, A.M. Pasqualeti, C.Y. Nicoliche, A.L. Gobbi, M. Santhiago, R.S. Lima, ACS Sens. 6, 3125 (2021)

    Article  CAS  PubMed  Google Scholar 

  66. H. Wei, D. Pan, Z. Zhou, H. Han, R. Zhu, Ecotoxicol. Environ. Saf. 221, 1 (2021)

    Article  Google Scholar 

  67. L. Alvarado-Ramírez, M. Rostro-Alanis, J. Rodríguez-Rodríguez, J.E. Sosa-Hernández, E.M. Melchor-Martínez, H.M. Iqbal, R. Parra-Saldívar, Biosensors 11, 410 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  68. S. Berchmans, T.B. Issa, P. Singh, Anal. Chim. Acta 4, 35 (2012)

    Google Scholar 

  69. S. Korkut, S. Göl, M.S. Kilic, Electroanalysis 32, 271 (2020)

    Article  CAS  Google Scholar 

  70. E. Watanabe, H. Endo, K. Toyama, Biosensors 3, 297 (1987)

    Article  PubMed  Google Scholar 

  71. G. Kopiec, K. Starzec, J. Kochana, T.P. Kinnunen-Skidmore, W. Schuhmann, W.H. Campbell, A. Ruff, N. Plumeré, Biosens. Bioelectron. 117, 505 (2018)

    Article  Google Scholar 

  72. N. Conrath, B. Gründig, K. Cammann, Anal. Chim. Acta 309, 47 (1995)

    Article  CAS  Google Scholar 

  73. C. Mousty, S. Cosnier, D. Shan, S. Mu, Anal. Chim. Acta 443, 1 (2001)

    Article  CAS  Google Scholar 

  74. K. IkebukuroA, R. Nishida, H. Yamamoto, Y. Arikawa, H. Nakamura, M. Suzuki, I. Kubo, T. Takeuchi, I. Karube, J. Biotechnol. 48, 71 (1996)

    Article  Google Scholar 

  75. C.I. Bagnis, S. Karie, G. Deray, M. Essig, Antivir. Ther. 14, 482 (2009)

    Article  Google Scholar 

  76. M. Levi, M. Popovtzer, in Atlases of Diseases of the Kidney. ed. by R.W. Schrier (Wiley-Blackwell, Hoboken, 1999), pp.1–14

    Google Scholar 

  77. H. Komaba, M. Fukagawa, Kidney Int. 90, 755 (2016)

    Article  Google Scholar 

  78. A.K. Ghosh, S.R. Joshi, J. Assoc. Physicians India 25, 1 (2008)

    Google Scholar 

  79. J.M. Pettifor, Eur. J. Pediatr. 167, 494 (2008)

    Article  Google Scholar 

  80. S. Khoshniat, A. Bourgine, M. Julien, P. Weiss, J. Guicheux, L. Beck, Cell. Mol. Life Sci. 68, 206 (2011)

    Article  Google Scholar 

  81. Y.N. Berner, M. Shike, Annu. Rev. Nutr. 8, 126 (1988)

    Article  Google Scholar 

  82. D.G. Hardie, F.A. Rossand, S.A. Hawley, Nat. Rev. Mol. Cell. Biol. 13, 251 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. D. Zheng, D.S. Seferos, D.A. Giljohann, P.C. Patel, C.A. Mirkin, Nano Lett. 9, 3258 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. H. Zhang, Y. Han, Y. Guo, C. Dong, J. Mater. Chem. 22, 23901 (2012)

    Google Scholar 

  85. S.K. Kim, D.H. Lee, J.I. Hong, J. Yoon, Acc. Chem. Res. 42, 24 (2009)

    Google Scholar 

  86. M.L. Hartman, F. Groppo, M. Ohnishi, J.M. Goodson, H. Hasturk, M. Tavares, T. Yaskell, C. Floros, K. Behbehani, M.S. Razzaque, in Phosphate and Vitamin D Chronic Kidney Disease. ed. by M.S. Razzaque (Karger Publishers, Basel, 2013), pp.138–148

    Chapter  Google Scholar 

  87. M.S. Calvo, J. Uribarri, Semin. Dial. 26, 55 (2013)

    Article  Google Scholar 

  88. O. Benini, C. D’Alessandro, D. Gianfaldoni, A. Cupisti, J. Ren. Nutr. 2, 146 (2011)

    Google Scholar 

  89. Y. Sabbagh, Clin. Nephrol. 79, 58 (2013)

    Article  Google Scholar 

  90. I. Kubo, Anal. Bioanal. Chem. 372, 273 (2002)

    Article  CAS  PubMed  Google Scholar 

  91. M.A. Rahman, D.S. Park, S.C. Chang, C.J. McNeil, Y.B. Shim, Biosens. Bioelectron. 21, 1116 (2006)

    Article  CAS  PubMed  Google Scholar 

  92. J. Zhang, Y. Bian, D. Liu, Z. Zhu, Y. Shao, M. Li, J. Anal. Chem. 91, 14666 (2019)

    Article  CAS  Google Scholar 

  93. S. Pourbeyram, M. Soltanpour, S. Fathalipour, J. Anal. Sci. Technol. 35, 739 (2019)

    Article  CAS  Google Scholar 

  94. M. Mazloum-Ardakani, N. Sadri, V. Eslami, Electroanalysis 32, 1148 (2020)

    Article  CAS  Google Scholar 

  95. J. Xu, Z. Gao, X. Dou, Y.Y. Song, J. Electroanal. Chem. 897, 1 (2021)

    Article  Google Scholar 

  96. F. Schubert, R. Renneberg, F.W. Scheller, L. Kirstein, J. Anal. Chem. 56, 1677 (1984)

    Article  CAS  Google Scholar 

  97. L. Gilbert, A.T.A. Jenkins, S. Browning, J.P. Hart, Sens. Actuators B: Chem. 160, 1322 (2011)

    Article  CAS  Google Scholar 

  98. L. Campanella, M. Cordatore, F. Mazzei, M. Tomassetti, J. Pharm. Biomed. Anal. 8, 711 (1990)

    Article  CAS  PubMed  Google Scholar 

  99. Q. Chen, S. Sun, G. Ran, C. Wang, W. Gu, Q. Song, J. Anal. Sci. Technol. 37, 1247 (2021)

    Article  CAS  Google Scholar 

  100. Z. Zou, J. Han, A. Jang, P.L. Bishop, C.H. Ahn, Biosens. Bioelectron. 22, 1902 (2007)

    Article  CAS  PubMed  Google Scholar 

  101. S. Ikeno, T. Haruyama, Sens. Actuators B: Chem. 108, 608 (2005)

    Article  CAS  Google Scholar 

  102. N. Manjubaashini, P.J. Sephra, K. Nehru, M. Sivakumar, T.D. Thangadurai, Sens. Actuators B: Chem. 281, 1054 (2019)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masato Tominaga.

Ethics declarations

Conflict of interest

There are no competing interest to declare.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sari, S.R., Tominaga, M. Progress and current trends in the electrochemical determination of phosphate ions for environmental and biological monitoring applications. ANAL. SCI. 39, 629–642 (2023). https://doi.org/10.1007/s44211-022-00228-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44211-022-00228-x

Keywords

Navigation