Skip to main content
Log in

Integration of enzyme-encapsulated mesoporous silica between nanohole array electrode and hydrogel film for flow-type electrochemical biosensor

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

We herein propose a simple and sensitive electrochemical flow biosensor platform without an external flow device. The sensing unit comprises a platinum nanohole array electrode deposited on a nanoporous track-etched membrane (PtNH/NPM), a packed-layer of glucose oxidase-encapsulated mesoporous silica particles (GOD/MPS), and bovine serum albumin hydrogel film (BSA gel film). This sensing unit was fixed at the open window at the side of the plastic container with internal solution containing NaCl as osmotic reagent. When the sample glucose solution (0.10 mL) was pipetted at the sensing unit, a portion of the sample solution (5 μL) was spontaneously transferred into the BSA gel film. The concentration gradient of NaCl between the internal solution and the BSA gel film induced osmotic flow of water toward the internal solution. This osmotic flow assisted delivery of glucose to the GOD/MPS and enzymatically generated H2O2 to the PtNH/NPM. The proposed sensor could be used repeatedly and produced a linear current response for glucose, with a limit of detection of 16 μM. These sensor performances confirmed availability of the sensor design utilizing the osmotic flow.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data Availability

All data generated or analysed during this study are included in this published article and its supplementary information file.

References

  1. D.W. Kimmel, G. LeBlanc, M.E. Meschievitz, D.E. Cliffel, Anal. Chem. 84, 685 (2012)

    Article  CAS  Google Scholar 

  2. C. Chen, Q. Xie, D. Yang, H. Xiao, Y. Fu, Y. Tan, S. Yao, RSC Adv. 3, 4473 (2013)

    Article  CAS  Google Scholar 

  3. K. Mathwig, T. Albrecht, E.D. Goluch, L. Rassaei, Anal. Chem. 87, 5470 (2015)

    Article  CAS  Google Scholar 

  4. C. Zhu, G. Yang, H. Li, D. Du, Y. Lin, Anal. Chem. 87, 230 (2015)

    Article  CAS  Google Scholar 

  5. H. Lee, Y.J. Hong, S. Baik, T. Hyeon, D.-H. Kim, Adv. Healthc. Mater. 7, 1701150 (2018)

    Article  Google Scholar 

  6. K.-C. Kao, T.-S. Lin, C.-Y. Mou, J. Phys. Chem. C 118, 6734 (2014)

    Article  CAS  Google Scholar 

  7. T. Shimomura, T. Itoh, T. Sumiya, F. Mizukami, M. Ono, Sens. Actuators B 135, 268 (2008)

    Article  CAS  Google Scholar 

  8. A. Küchler, M. Yoshimoto, S. Luginbühl, F. Mavelli, P. Walde, Nat. Nanotechnol. 11, 409 (2016)

    Article  Google Scholar 

  9. A. Walcarius, Curr. Opin. Electrochem. 10, 88 (2018)

    Article  CAS  Google Scholar 

  10. X. Yang, P. Qiu, J. Yang, Y. Fan, L. Wang, W. Jiang, X. Cheng, Y. Deng, W. Luo, Small 17(9), 1904022 (2019)

    Article  Google Scholar 

  11. A. Yamaguchi, M. Saiga, D. Inaba, M. Aizawa, Y. Shibuya, T. Itoh, Anal. Sci. 37, 49 (2021)

    Article  CAS  Google Scholar 

  12. Y. Bai, H. Yang, W. Yang, Y. Li, C. Sun, Sens. Actuators B 124, 179 (2007)

    Article  CAS  Google Scholar 

  13. Z. Dai, J. Bao, X. Yang, H. Ju, Biosens. Bioelectron. 23, 1070 (2008)

    Article  CAS  Google Scholar 

  14. K. Wang, H. Yang, L. Zhu, J. Liao, T. Lu, W. Xing, S. Xing, Q. Lv, J. Mol. Catal. B 58, 194 (2009)

    Article  CAS  Google Scholar 

  15. G. Zhou, K.K. Fung, L.W. Wong, Y. Chen, R. Renneberg, S. Yang, Talanta 84, 659 (2011)

    Article  CAS  Google Scholar 

  16. H. Li, J. He, Y. Zhao, D. Wu, Y. Cai, Q. Wei, M. Yang, Electrochim. Acta 56, 2960 (2011)

    Article  CAS  Google Scholar 

  17. J. Li, X. Qin, Z. Yang, H. Qi, Q. Xu, G. Diao, Talanta 104, 116 (2013)

    Article  CAS  Google Scholar 

  18. X. Cao, Y. Sun, Y. Ye, Y. Li, X. Ge, Anal. Methods 6, 1448 (2014)

    Article  CAS  Google Scholar 

  19. A.Y. Khan, S.B. Noronha, R. Bandyopadhyaya, Adv. Power Technol. 27, 85 (2016)

    Article  CAS  Google Scholar 

  20. J. Sheng, L. Zhang, J. Lei, H. Lu, Anal. Chim. Acta 709, 41 (2012)

    Article  CAS  Google Scholar 

  21. T. Itoh, T. Shimomura, A. Hayashi, A. Yamaguchi, N. Teramae, M. Ono, T. Tsunoda, F. Mizukami, G.D. Stucky, T. Hanaoka, Analyst 139, 4654 (2014)

    Article  CAS  Google Scholar 

  22. H. Mizuguchi, K. Sasaki, H. Ichinose, S. Seino, J. Sakurai, M. Iiyama, T. Kijima, K. Tachibana, T. Nishida, T. Takayanagi, J. Shida, Bull. Chem. Soc. Jpn. 90, 1211 (2017)

    Article  CAS  Google Scholar 

  23. S. Tvorynska, J. Barek, B. Josypcuk, Sens. Actuators B 344, 130252 (2021)

    Article  CAS  Google Scholar 

  24. K. Hosokawa, M. Omata, K. Sato, M. Maeda, Lab Chip 6, 236 (2006)

    Article  CAS  Google Scholar 

  25. I.-J. Chen, E. Lindner, Anal. Chem. 81, 9955 (2009)

    Article  CAS  Google Scholar 

  26. B.T. Good, C.N. Bowman, R.H. Davis, J. Colloid Interface Sci. 305, 239 (2007)

    Article  CAS  Google Scholar 

  27. J.Y. Park, C.M. Hwang, S.H. Lee, S.-H. Lee, Lab Chip 7, 1673 (2007)

    Article  CAS  Google Scholar 

  28. J.Y. Park, S.K. Kim, D.H. Woo, E.-J. Lee, J.H. Kim, S.H. Lee, Stem Cells 27, 2646 (2009)

    Article  CAS  Google Scholar 

  29. Z.-R. Xu, C.-G. Yang, C.-H. Liu, Z. Zhou, J. Fang, J.-H. Wang, Talanta 80, 1088 (2010)

    Article  CAS  Google Scholar 

  30. B.R. Bruhn, T.B.H. Schroeder, S. Li, Y.N. Billeh, K.W. Wang, M. Mayer, PLoS ONE 9, e91350 (2014)

    Article  Google Scholar 

  31. V. Narayanamurthy, Z.E. Jeroish, K.S. Bhuvaneshwari, P. Bayat, R. Premkumar, F. Samsuri, M.M. Yusoff, RSC Adv. 10, 11652 (2020)

    Article  CAS  Google Scholar 

  32. D. Lantigua, M.A. Nguyen, X. Wu, S. Suvarnapathaki, S. Kwon, W. Gavin, G. Camci-Unal, Soft Mater. 16, 9242 (2020)

    Article  CAS  Google Scholar 

  33. A. Tobitani, S.B. Ross-Murphy, Macromolecules 30, 4845 (1997)

    Article  CAS  Google Scholar 

  34. L.-C. Sang, M.-O. Coppens, Phys. Chem. Chem. Phys. 13, 6689 (2011)

    Article  CAS  Google Scholar 

  35. W. Fu, A. Yamaguchi, H. Kaneda, N. Teramae, Chem. Commun. 7, 853 (2008)

    Article  Google Scholar 

  36. E. L. Cussler, Diffusion: Mass transfer in fluid systems, 2nd eds. (Cambridge University Press, 1997)

  37. Y. Zhou, J. Li, Y. Zhang, D. Dong, E. Zhang, F. Ji, Z. Qin, J. Yang, F. Yao, J. Phys. Chem. B 121, 800 (2017)

    Article  CAS  Google Scholar 

  38. P.M. Diakowski, H.-B. Kraatz, Chem. Commun. 10, 1189 (2009)

    Article  Google Scholar 

  39. X. Yang, Z. Zhou, D. Xiao, M.M.F. Choi, Biosens. Bioelectron. 21, 1613 (2006)

    Article  CAS  Google Scholar 

  40. A. Ahmad, Md.S. Akhtar, V. Bhakuni, Biochemistry 40, 1945 (2001)

    Article  CAS  Google Scholar 

  41. Y. Sugimoto, Y. Kitazumi, O. Shirai, M. Yamamoto, K. Kano, J. Phys. Chem. B 120, 3122 (2016)

    Article  CAS  Google Scholar 

  42. Y.-S. Liu, Y.-H. Hu, Q.-C. Hao, X.-M. Zhang, Z.-C. Liu, J.-G. Li, J. Chem. Eng. Data 54, 739 (2009)

    Article  CAS  Google Scholar 

  43. D. Bruen, C. Delaney, L. Florea, D. Diamond, Sensors 17, 1866 (2017)

    Article  Google Scholar 

  44. H. Mizuguchi, D. Nishimori, T. Kuwabara, M. Takeuchi, M. Iiyama, T. Takayanagi, Anal. Chim. Acta 1102, 46 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by JSPS KAKENHI Grant Numbers 16H04160 and 22K05168, and Takahashi Industrial and Economic Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Yamaguchi.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Supplementary Information

Below is the link to the electronic supplementary material.

44211_2022_209_MOESM1_ESM.pdf

Supplementary file1 Photograph of the BSA gel film, additional sensor scheme, results on characterization of the mesoporous silica, SEM images of nanoporous anodic alumina membranes, additional cyclic voltammograms, additional amperometric profiles. (PDF 2252 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Inaba, D., Yamaguchi, A. Integration of enzyme-encapsulated mesoporous silica between nanohole array electrode and hydrogel film for flow-type electrochemical biosensor. ANAL. SCI. 39, 153–161 (2023). https://doi.org/10.1007/s44211-022-00209-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44211-022-00209-0

Keywords

Navigation