Skip to main content

Development and application of an analysis method for the determination of rare earth elements in silicate-rich samples by Na2O2 sintering and ICP–MS analysis

Abstract

The performance of a fast and simple analytical procedure for rare earth elements (REEs) quantification from secondary sources was investigated in the present work. Seven silicate-rich certified reference materials (CRMs) in the form of Andesite (JA-1), Basalt (JB-3), Rhyolite (JR-1, JR-2), Granite (JG-2), Granodiorite (JG-3), and Till (TILL-1), were used for the optimization and characterization of the analysis method. The optimized method was used in the analysis of nine mining wastes selected within the ENVIREE project, under the ERA-MIN Program of the 7th Framework, having as the main aim to ensure a policy securing long-term access of REEs secondary sources at reasonable costs. For silicate-rich samples efficient solid dissolution involves sintering with Na2O2 at 460 °C and a sample to oxidizing reagent ratio of 1:6.5. Inductively coupled plasma–mass spectrometry (ICP–MS) was used in the quantification of the REEs with aerosol dilution of samples applied to minimize the salt effect on the plasma and interface regions. The work performed in the present study clearly shows that accurate reports on the REE concentrations from geological matrices also involves as mandatory the estimation of the overall uncertainty from various sources (sample preparation or analyte measurements). In the analysis of geological samples, the proposed analysis method has on average 23% of the overall uncertainty explained by the sample preparation and 77% accounted by the analysis steps. Moreover, the method described by effective, cheap, robust and safe attributes, can be recommended as an accessible alternative to the HF wet digestion method. Although from all the investigated tailings samples, only those from Sweden and Czech Republic can be regarded as potential secondary sources for REEs, investigation of other resources with interest at European level might bring a great benefit in the general attempt to develop an economically viable method for the production of rare earth elements.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary information files.

References

  1. H. Paulick, E. Machacek, Resour. Policy (2017). https://doi.org/10.1016/j.resourpol.2017.02.002

    Article  Google Scholar 

  2. D. M. Hoatson, S. Jaireth, Y. Miezitis, The major rare-earth-element deposits of Australia: geological setting, exploration, and resources (Geoscience Australia, 2011), pp. 1–112

  3. Z. Zhang, Y. Du, L. Gao, Y. Zhang, G. Shi, C. Liu, P. Zhang, X. Duan, J. Rare Earths (2012). https://doi.org/10.1016/S1002-0721(12)60101-X

    Article  Google Scholar 

  4. G. Oddo, Zeitschrift für Anorg Chemie (1914). https://doi.org/10.1002/zaac.19140870118

    Article  Google Scholar 

  5. W.D. Harkins, J. Am. Chem. Soc. (1917). https://doi.org/10.1021/ja02250a002

    Article  Google Scholar 

  6. E. Alonso, A.M. Sherman, T.J. Wallington, M.P. Everson, F.R. Field, R. Roth, R.E. Kirchain, Environ. Sci. Technol. (2012). https://doi.org/10.1021/es203518d

    Article  PubMed  Google Scholar 

  7. G. Barakos, J. Gutzmer, H. Mischo, J. Sustain. Min. (2016). https://doi.org/10.1016/j.jsm.2016.05.002

    Article  Google Scholar 

  8. J. Gambogi, Rare earths—mineral commodity summaries (National Minerals Information Center-U.S. Geological Survey, 2018), https://s3-us-west-2.amazonaws.com/prd-wret/assets/palladium/production/mineral-pubs/rare-earth/mcs-2018-raree.pdf. Accessed 28 Apr 2022

  9. C. Cox, J. Kynicky, Extr. Ind. Soc. (2018). https://doi.org/10.1016/j.exis.2017.09.002

    Article  Google Scholar 

  10. K. Binnemans, P.T. Jones, B. Blanpain, T. Van Gerven, Y. Yang, A. Walton, M. Buchert, J. Clean. Prod. (2013). https://doi.org/10.1016/j.jclepro.2012.12.037

    Article  Google Scholar 

  11. S.B. Castor, Resour. Geol. (2008). https://doi.org/10.1111/j.1751-3928.2008.00068.x

    Article  Google Scholar 

  12. X.M. Yang, M.J. Le Bas, Lithos (2004). https://doi.org/10.1016/j.lithos.2003.09.002

    Article  Google Scholar 

  13. S. Peelman, Z.H.I. Sun, J. Sietsma, Y. Yang, in Rare Earths Industry, Technological, Economic, and Environmental Implications. ed. by I.B. De Lima, W.L. Filho (Elsevier, Amsterdam, 2015), pp.319–334

    Google Scholar 

  14. J. Kulczycka, Z. Kowalski, M. Smol, H. Wirth, J. Clean. Prod. (2016). https://doi.org/10.1016/j.jclepro.2015.11.039

    Article  Google Scholar 

  15. P.J. Potts, Analyst (1997). https://doi.org/10.1039/A704856D

    Article  Google Scholar 

  16. S.P. Verma, E. Santoyo, F. Velasco-Tapia, Int. Geol. Rev. (2002). https://doi.org/10.2747/0020-6814.44.4.287

    Article  Google Scholar 

  17. L. Ebdon, E.H. Evans, A.S. Fisher, S.J. Hill, An Introduction to Analytical Atomic Spectrometry (Wiley, Hoboken, 1998), pp.73–107

    Google Scholar 

  18. G. McMahon, Analytical Instrumentation: A Guide to Laboratory, Portable and Miniaturized Instruments (Wiley, Hoboken, 2007), pp.49–58

    Book  Google Scholar 

  19. C. Herbert, R. Johnstone, Mass Spectrometry Basics, 1st edn. (CRC Press, Boca Raton, 2002), pp.87–116

    Book  Google Scholar 

  20. S. Lin, M. He, S. Hu, H. Yuan, S. Gao, Anal. Sci. (2000). https://doi.org/10.2116/analsci.16.1291

    Article  Google Scholar 

  21. S.I. Yamasaki, A. Tsumura, Anal. Sci. (1991). https://doi.org/10.2116/analsci.7.Supple_1135

    Article  Google Scholar 

  22. B. Zawisza, K. Pytlakowska, B. Feist, M. Polowniak, A. Kita, R. Sitko, J. Anal. At. Spectrom. (2011). https://doi.org/10.1039/c1ja10140d

    Article  Google Scholar 

  23. Z.H.U. Ming-Yong, T.A.N. Shu-Duan, L.I.U. Wen-Zhi, Z. Quan-Fa, Agric. Sci. China (2010). https://doi.org/10.1016/S1671-2927(09)60204-2

    Article  Google Scholar 

  24. G. Hall, J. Vaive, J.C. Pelchat, J. Anal. At. Spectrom. (1996). https://doi.org/10.1039/JA9961100779

    Article  Google Scholar 

  25. A. Fischer, D. Kara, Anal. Chim. Acta (2019). https://doi.org/10.1016/j.aca.2016.05.052

    Article  Google Scholar 

  26. K.H. Lee, Y. Muraoka, M. Oshima, S. Motomizu, Anal. Sci. (2004). https://doi.org/10.2116/analsci.20.183

    Article  PubMed  Google Scholar 

  27. Y. Suzuki, T. Suzuki, N. Furuta, Anal. Sci. (2010). https://doi.org/10.2116/analsci.26.929

    Article  PubMed  Google Scholar 

  28. P. Dulski, Anal. Chem. (1994). https://doi.org/10.1007/BF00322470

    Article  Google Scholar 

  29. T. Narukawa, K. Chiba, Anal. Sci. (2013). https://doi.org/10.2116/analsci.29.747

    Article  PubMed  Google Scholar 

  30. K. Shinotsuka, H. Hidaka, M. Ebihara, H. Nakahara, Anal. Sci. (1996). https://doi.org/10.2116/analsci.12.917

    Article  Google Scholar 

  31. D. Beauchemin, in Comprehensive Analytical Chemistry. ed. by D. Beauchemin, C. Gregoire, D. Gunteher, V. Karanassios, J.-M. Mermet, T. Wood (Elsevier, Amsterdam, 2000), pp.1–212

    Google Scholar 

  32. N.N. Fedyunina, I.F. Seregina, M.A. Bolshov, O.I. Okina, S.M. Lyapunov, Anal. Chim. Acta (2012). https://doi.org/10.1016/j.aca.2011.11.035

    Article  PubMed  Google Scholar 

  33. H.P. Longerich, G.A. Jenner, B.J. Fryer, S.E. Jackson, Chem. Geol. (1990). https://doi.org/10.1016/0009-2541(90)90143-U

    Article  Google Scholar 

  34. N. Zhang, X. Gao, Y. Shen, C. Wang, J. Wang, Anal. Sci. (2013). https://doi.org/10.2116/analsci.29.441

    Article  PubMed  Google Scholar 

  35. T. Mochizuki, A. Sakashita, H. Iwata, Y. Ishibashi, N. Gunji, Anal. Sci. (1989). https://doi.org/10.2116/analsci.5.311

    Article  Google Scholar 

  36. P.J. Potts, A Handbook of Silicate Rock Analysis, 1st edn. (Springer, New York, 1992), pp.47–192

    Book  Google Scholar 

  37. A. Cotta, J. Enzweiler, Geosci. Front. (2011). https://doi.org/10.1111/j.1751-908X.2011.00115.x

    Article  Google Scholar 

  38. Y. Lu, G. Li, W. Liu, H. Yuan, D. Xiao, Talanta (2018). https://doi.org/10.1016/j.talanta.2018.03.074

    Article  PubMed  Google Scholar 

  39. A. Itoh, T. Hamanaka, W. Rong, K. Ikeda, H. Sawatari, K. Chiba, H. Haraguchi, Anal. Sci. (1999). https://doi.org/10.2116/analsci.15.17

    Article  Google Scholar 

  40. T.A. Rafter, Analyst (1950). https://doi.org/10.1039/AN9507500485

    Article  Google Scholar 

  41. F.T. Seelye, T.A. Rafter, Nature (1950). https://doi.org/10.1038/165317a0

    Article  Google Scholar 

  42. C.B. Belcher, Talanta (1963). https://doi.org/10.1016/0039-9140(63)80207-6

    Article  Google Scholar 

  43. R. Taggart, J. Hower, H. Hsu-Kim, Int. J. Coal Geol. (2018). https://doi.org/10.1016/j.coal.2018.06.021

    Article  Google Scholar 

  44. A. Ando, N. Mita, S. Terashima, Geostand. Newsl. (1987). https://doi.org/10.1111/j.1751-908X.1987.tb00023.x

    Article  Google Scholar 

  45. N. Imai, S. Terashima, S. Itoh, A. Ando, Geochem. J. (1995). https://doi.org/10.2343/geochemj.29.91

    Article  Google Scholar 

  46. N. Imai, S. Terashima, S. Itoh, A. Ando, Geostand. Newsl. (1995). https://doi.org/10.1111/j.1751-908X.1995.tb00158.x

    Article  Google Scholar 

  47. C. R. Daniela, L. M. Gomes, P. Koran, J. Heller, C. Ekberg, Report on the identification of secondary resources in Europe and South Africa and brief description of their wastes. (ENVIREE Project deliverable D1.1, 2016). http://www.enviree.eu/fileadmin/user_upload/ENVIREE_D1.1_Report_on_identification_of_secondary_sources.pdf. Accessed 08 Apr 2022

  48. D.J. Douglas, J.B. French, Anal. Chem. (1981). https://doi.org/10.1021/ac00224a011

    Article  Google Scholar 

  49. R.S. Houk, V.A. Fassel, G.D. Flesch, H.J. Svec, Anal. Chem. (1980). https://doi.org/10.1021/ac50064a012

    Article  Google Scholar 

  50. S. Asai, A. Limbeck, Talanta (2015). https://doi.org/10.1016/j.talanta.2014.12.009

    Article  PubMed  Google Scholar 

  51. R. Bettencourt da Silva, A. Williams, Setting and Using Target Uncertainty in Chemical Measurement, 1st edn (Eurachem/CITAC Guide, 2015), https://www.eurachem.org/images/stories/Guides/pdf/STMU_2015_EN.pdf. Accessed 08 Apr 2022

  52. Joint Committee for Guides in Metrology-JCGM, Evaluation of measurement data—guide of the expression of uncertainty in measurement, JCGM 100:2008 (GUM 1995 with minor corrections) 2008

  53. M.F. Camoes, G.D. Christian, D.B. Hibbert, Pure Appl. Chem. (2018). https://doi.org/10.1515/pac-2017-0410

    Article  Google Scholar 

  54. E. Donges, in Handbook of Preparative Inorganic Chemistry. ed. by G. Brauer (Academic Press, Cambridge, 1963), pp.950–992

    Chapter  Google Scholar 

  55. H. Jakob, S. Leininger, T. Lehmann, S. Jacobi, S. Gutewort, Ullmann’s Encyclopedia of Industrial Chemistry (Wiley, Hoboken, 2007), pp.293–324

    Google Scholar 

  56. N.N. Greenwood, A. Earnshaw, Chemistry of the Elements, 2nd edn. (Butterworth-Heinemann, Oxford, 1998), pp.1227–1249

    Google Scholar 

  57. P. Robinson, N. Higgins, G. Jenner, Chem. Geol. (1986). https://doi.org/10.1016/0009-2541(86)90132-4

    Article  Google Scholar 

  58. S.N.H. Bokhari, T.C. Meisel, Geostand. Geoanal. Res. (2017). https://doi.org/10.1111/ggr.12149

    Article  Google Scholar 

  59. G. Bayon, J.A. Barrat, J. Etoubleau, M. Benoit, C. Bollinger, S. Revillon, Geostand. Geoanal. Res. (2009). https://doi.org/10.1111/j.1751-908X.2008.00880.x

    Article  Google Scholar 

  60. Canadian Certified Reference Materials Project, Certificate of analysis, provisional values for TILL-1, TILL-2, TILL-3 and TILL-4 Geochemical Soil and Till Reference Materials (CAMNET Mining and Mineral Sciences Laboratories, 1995). https://www.nrcan.gc.ca/sites/www.nrcan.gc.ca/files/mineralsmetals/pdf/mms-smm/tect-tech/ccrmp/cer-cer/TILL_CERT-eng.pdf. Accessed 14 Dec 2021

  61. Y. Zhu, K. Nakano, Z. Wang, Y. Shikamori, K. Chiba, T. Kuroiwa, A. Hioki, K. Inagaki, Anal. Sci. (2018). https://doi.org/10.2116/analsci.18SBP09

    Article  PubMed  Google Scholar 

  62. S.R. Taylor, in Origin and Distribution of the Elements. ed. by L.H. Ahrens (Pergamon Press, Oxford, 1968), pp.559–583

    Chapter  Google Scholar 

  63. S.R. Taylor, S.M. McLennan, Rev. Geophys. (1995). https://doi.org/10.1029/95RG00262

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support provided by UEFISCDI within the European and International Cooperation—Horizon 2020, ERAMIN-ERANET No. 25/2015. Acknowledgment is given to the infrastructure support from the Operational Program Competitiveness through RECENT AIR project, grant agreement MySMIS no. 127324.

Author information

Authors and Affiliations

Authors

Contributions

L-VS: Conceptualization, Methodology, Validation, Formal Analyses, Investigation, Data curation, Writing—Original draft preparation, Visualization. CA: Validation, Resources, Writing—Reviewing and Editing, Visualization, Supervision, Project administration. CB: Resources, Writing—Reviewing and Editing, Funding acquisition. MP: Resources, Writing—Reviewing and Editing. R-IO: Conceptualization, Methodology, Validation, Resources, Data curation, Writing—Reviewing and Editing, Visualization, Supervision, Project administration, Funding acquisition.

Corresponding author

Correspondence to Romeo-Iulian Olariu.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 698 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Soroaga, LV., Arsene, C., Borcia, C. et al. Development and application of an analysis method for the determination of rare earth elements in silicate-rich samples by Na2O2 sintering and ICP–MS analysis. ANAL. SCI. (2022). https://doi.org/10.1007/s44211-022-00172-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s44211-022-00172-w

Keywords

  • Na2O2 sintering
  • ICP-MS
  • Rare earth elements
  • Secondary sources