Skip to main content

A simple colorimetric method based on “on–off–on” mode for detection of H2S and Hg2+ in water

Abstract

It is of great significance to develop efficient platforms for the detection of hypertoxic Hg2+ and H2S. Colorimetric have received much attention for the detection of H2S and Hg2+ in the last decades. In this work, an “on–off–on” mode colorimetric method based on MnO2/multi-wall carbon nanotubes (MnO2/MWCNTs) composite was constructed. MnO2/MWCNTs composite can oxidize TMB directly to form blue product (ox TMB) with a good simulated oxidase activity. In the presence of H2S, it can decompose the MnO2/MWCNTs composite causing the absorbance of the chromogenic system to decrease. When Hg2+ is introduced, the formation of Hg–S bond between Hg2+ and H2S inhibited the decomposition ability of H2S toward MnO2 composite, thus resulting in a color change from colorless to blue. Based on this phenomenon, the proposed “on–off–on” colorimetric sensor can be used for detection of H2S (off) and Hg2+ (on). Under optimized experimental conditions, this sensor showed a satisfactory linear relationship of H2S and Hg2+ with pleasant repeatability, acceptable method accuracy and stability. More importantly, the proposed colorimetric sensor has been successfully applied to the detection of H2S and Hg2+ in real samples, which not only provides a simple and cost-effective method to detect H2S and Hg2+ but also hopefully makes a certain contribution to environmental protection.

Graphical abstract

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. S. Chen, P. Hou, J. Wang, S. Fu, L. Liu, A rapid and selective fluorescent probe with a large Stokes shift for the detection of hydrogen sulfide. Spectrochim. Acta. Part A Mol. Biomol. Spectrosc. 203, 258–262 (2018)

    CAS  Article  Google Scholar 

  2. Z.Q. Yuan, F.N. Lu, M.H. Peng, C.W. Wang, Y.T. Tseng, Y. Du et al., Selective colorimetric detection of hydrogen sulfide based on primary amine-active ester cross-linking of gold nanoparticles. Anal. Chem. 87, 7267–7273 (2018)

    Article  CAS  Google Scholar 

  3. M.H. Chen, X.J. Li, Q.X. Shi, Z.W. Zhang, S.W. Xu, Hydrogen sulfide exposure triggers chicken trachea inflammatory injury through oxidative stress-mediated FOS/IL8 signaling. J. Hazard. Mater. 368, 243–254 (2019)

    CAS  PubMed  Article  Google Scholar 

  4. L. Zhang, T.C. Xu, W. Ji, X.F. Wang, S.W. Cheng, S. Zhang, Y. Zhang, M. Zhang, Ag2S/Ag nanoparticle microelectrodes for in vivo potentiometric measurement of hydrogen sulfide dynamics in the rat brain. Anal. Chem. 93, 7063–7070 (2021)

    CAS  PubMed  Article  Google Scholar 

  5. J.L. Zhang, Q.P. Zhang, Y.N. Wang, J.L. Li, Z.J. Bai, Q.Y. Zhao, Z. Wang, D. He et al., Toxicities and beneficial protection of H2S donors based on nonsteroidal anti-inflammatory drugs. Medchemcomm. 10, 742–756 (2019)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. X.Y. Hu, Q.R. Chi, Q.Q. Liu, A.X. Wang, Y.M. Zhang, S. Li, Atmospheric H2S triggers immune damage by activating the TLR-7/MyD88/NF-κB pathway and NLRP3 inflammasome in broiler thymus. Chemosphere 237, 124427 (2019)

    CAS  PubMed  Article  Google Scholar 

  7. H.M. Zeng, Y.L. Liu, Z.G. Xu, Y.J. Wang, Y.Q. Chai, R. Yuan, H.Y. Liu, Construction of Z-scheme g-C3N4/Ag/AgI heterojunction for highly selective photoelectrochemical detection of hydrogen sulfide. Chem. Commun. 55, 11940–11943 (2019)

    CAS  Article  Google Scholar 

  8. M.L. Firdaus, I. Fitriani, S. Wyantuti, Y.W. Hartati, R. Khaydarov, J.A. McAlister, H. Obata, T. Gamo, Colorimetric detection of mercury (II) ion in aqueous solution using silver nanoparticles. Anal. Sci. 33, 925–930 (2017)

    Article  Google Scholar 

  9. Y.F. Kong, J.G. Shen, A.P. Fan, Colorimetric method for the detection of mercury ions based on gold nanoparticles and mercaptophenyl boronic acid. Anal. Sci. 33, 925–930 (2017)

    CAS  PubMed  Article  Google Scholar 

  10. T. Liu, Q. Chen, L.B. Zhang, X.L. Liu, C.M. Liu, The toxicity of selenium and mercury in Suaeda salsa after 7-days exposure. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 244, 109022 (2021)

    CAS  PubMed  Article  Google Scholar 

  11. X.J. Li, J. Ling, C.L. Han, L.Q. Chen, Q.E. Cao, Z.T. Ding, Chicken egg white-stabilized Au nanoclusters for selective and sensitive detection of Hg (II). Anal. Sci. 33, 671–675 (2017)

    CAS  PubMed  Article  Google Scholar 

  12. M.H. Hazelhoff, A.M. Torres, Gender differences in mercury-induced hepatotoxicity: potential mechanisms. Chemosphere 202, 330–338 (2018)

    CAS  PubMed  Article  Google Scholar 

  13. Y.Q. Tang, Y.G. Liu, T. Zhang, J. Li, X.H. Wang, W. Zhang, G.M. Zeng, S.B. Liu, L. Guan, Acute toxicity of divalent mercury ion to Anguilla japonica from seawater and freshwater aquaculture and its effects on tissue structure. Int. J. Environ. Res. Public Health 16, 1965 (2019)

    CAS  PubMed Central  Article  Google Scholar 

  14. S. Bose-O’Reilly, B. Lettmeier, R. MatteucciGothe, C. Beinhoff, U. Siebert, G. Drasch, Mercury as a serious health hazard for children in gold mining areas. Environ Res. 107, 89–97 (2008)

    PubMed  Article  CAS  Google Scholar 

  15. L.B. Li, B.N. Chen, X.H. Liu, P.N. Jiang, L.J. Luo, X. Li, T.Y. You, ‘On–off–on’ electrochemiluminescent aptasensor for Hg2+ based on dual signal amplification enabled by a self-enhanced luminophore and resonance energy transfer. J. Electroanal. Chem. 907, 116063 (2022)

    CAS  Article  Google Scholar 

  16. B. Li, L. Li, K.Q. Wang, C. Wang, L.L. Zhang, K. Liu, Y.Q. Lin, Ultrasensitive and facile electrochemical detection of hydrogen sulfide in rat brain microdialysate based on competitive binding reaction. Anal. Bioanal. Chem. 409, 1101–1107 (2017)

    CAS  PubMed  Article  Google Scholar 

  17. Y.S. Shi, G.Q. Zhang, J.J. Li, Y. Zhang, Y.B. Yu, Q. Wei, Photoelectrochemical determination of Hg (II) via dual signal amplification involving SPR enhancement and a folding-based DNA probe. Microchim. Act. 184, 1379–1387 (2017)

    CAS  Article  Google Scholar 

  18. H.L. Yang, Y.X. Huang, Y.J. Zhao, A.P. Fan, Sensitive chemiluminescent sensing method for mercury (II) ions based on monolayer molybdenum disulfide. Anal. Sci. 35, 551–556 (2019)

    CAS  PubMed  Article  Google Scholar 

  19. C.M. Levinn, M.D. Pluth, Direct comparison of triggering motifs on chemiluminescent probes for hydrogen sulfide detection in water. Sens. Actuators B Chem. 329, 129235 (2021)

    CAS  PubMed  Article  Google Scholar 

  20. X.M. Ma, Z. Wang, S. He, J.Y. Zhao, X.Q. Lai, J.G. Xu, l-Cysteine modified gold nanoparticles for tube-based fluorometric determination of mercury (II) ions. Microchim. Act. 186, 632–640 (2019)

    Article  CAS  Google Scholar 

  21. J.L. Wang, H. Wang, S.X. Yang, H.Y. Tian, Y.G. Liu, B.G. Sun, A novel fluorescent probe for detecting hydrogen sulfide in wine. Food Anal. Methods. 11, 1398–1404 (2018)

    Article  Google Scholar 

  22. H. Yang, S.B. Ye, Y. Fu, W.H. Zhang, F.Y. Xie, L. Gong, P.P. Fang, J. Chen, Y.X. Tong, A simple and highly sensitive thymine sensor for mercury ion detection based on surface enhanced raman spectroscopy and the mechanism study. Nanomaterials 7, 192 (2017)

    PubMed Central  Article  CAS  Google Scholar 

  23. P.Y. Wang, L.F. Lux, M.M. Jin, Y. Wan, W.X. Wang, C.T. Hung, F.H. Albaqami, A.M. El-Toni, M.S. Alhoshan, X.M. Li, F. Zhang, Au/Ag nanobox-based near-infrared surface-enhanced Raman scattering for hydrogen sulfide sensing. ACS Appl. Bio Mater. 2(1), 417–423 (2019)

    CAS  PubMed  Article  Google Scholar 

  24. R. Kaushik, A. Singh, A. Ghosh, D.A. Jose, Selective colorimetric sensor for the detection of Hg2+ and H2S in aqueous medium and waste water samples. ChemistrySelect 61, 1533–1540 (2016)

    Article  CAS  Google Scholar 

  25. X.M. Wu, N. Duan, Y.N. Li, S.X. Yang, H.Y. Tian, B.G. Sun, A dual-mode fluorescent probe for the separate detection of mercury (II) and hydrogen sulfide. J. Photochem. Photobiol. A 388, 112209 (2020)

    Article  CAS  Google Scholar 

  26. R. Li, X.T. He, R. Javed, J. Cai, H.M. Cao, X. Liu, H.B. Zhao et al., Switching on-off-on colorimetric sensor based on Fe-N/S-C single-atom nanozyme for ultrasensitive and multimodal detection of Hg2+. Sci. Total Environ. 834, 155428 (2022)

    CAS  PubMed  Article  Google Scholar 

  27. H.Y. He, D.W. Sun, Z.H. Wu, H.B. Pu, Q.Y. Wei, On–off–on fluorescent nanosensing: materials, detection strategies and recent food applications. Trends Food Sci. Technol. 119, 243–256 (2022)

    CAS  Article  Google Scholar 

  28. Y.M. Lei, M. Zhao, A. Wang, Y.Q. Yu, Y.Q. Chai, R. Yuan, Y. Zhuo, Electrochemiluminescence of supramolecular nanorods and their application in the “On–Off–On” detection of copper ions. Chem. Eur. J. 22, 8207–8214 (2016)

    CAS  PubMed  Article  Google Scholar 

  29. X.H. Huang, K.Q. Li, X. Wang, P. Xia, Rational design of an “on–off–on” fluorescent switch for Cu2+ and histidine based on chiral macrocyclic dioxopolyamine. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 205, 287–291 (2018)

    CAS  Article  Google Scholar 

  30. Y.H. Guo, K.L. Yang, J.H. Sun, J. Wu, H.X. Ju, A pH-responsive colorimetric strategy for DNA detection by acetylcholinesterase catalyzed hydrolysis and cascade amplification. Biosens. Bioelectron. 94, 651–656 (2017)

    CAS  PubMed  Article  Google Scholar 

  31. R.R. Ren, G.N. Cai, Z.Z. Yu, Y.Y. Zeng, D.P. Tang, Metal-polydopamine framework: an innovative signal-generation tag for colorimetric immunoassay. Anal. Chem. 90, 11099–11105 (2018)

    CAS  PubMed  Article  Google Scholar 

  32. J. Charoensuk, J. Thonglao, B. Wichaiyo, K. Mukdasai, Y. Santaladchaiyakit, S. Srijaranai, S. Mukdasai, A simple and sensitive colorimetric sensor for cadmium (II) detection based on self-assembled trimethyl tetradecyl ammonium bromide and murexide on colloidal silica. Microchem. J. 160, 105666 (2021)

    CAS  Article  Google Scholar 

  33. L.Y. Gong, L.H. Su, H.Y. Jiang, Rapid synthesis of homogeneous MnO2/multi-wall carbon nanotubes nanostructure and its electrochemical capacitive behavior. Mater. Lett. 15, 1588–1590 (2011)

    Article  CAS  Google Scholar 

  34. H. Ouyang, Q. Lu, W.W. Wang, Y. Song, X.M. Tu, C.Z. Zhu, J.N. Smith et al., Dual-readout immunochromatographic assay by utilizing MnO2 nanoflowers as the unique colorimetric/chemiluminescent probe. Anal. Chem. 90, 5147–5152 (2018)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. J. Ge, R. Cai, X.G. Chen, Q. Wu, L.L. Zhang, Y. Jiang, C. Cui, S. Wan, W.H. Tan, Facile approach to prepare HSA-templated MnO2 nanosheets as oxidase mimic for colorimetric detection of glutathione. Talanta 195, 40–45 (2019)

    CAS  PubMed  Article  Google Scholar 

  36. F.Y. Tian, J. Zhou, J. Ma, S.Y. Liu, B.N. Jiao, Y. He, MnO2 nanosheets as oxidase mimics for colorimetric detection of alkaline phosphatase activity. Microchim. Act. 186, 1–9 (2019)

    CAS  Article  Google Scholar 

  37. Z.N. Huang, G.C. Liu, J. Zou, X.Y. Jiang, Y.P. Liu, J.G. Yu, A hybrid composite of recycled popcorn-shaped MnO2 microsphere and Ox-MWCNTs as a sensitive non-enzymatic amperometric H2O2 sensor. Microchem. J. 158, 105215 (2020)

    CAS  Article  Google Scholar 

  38. J.L. Miao, C.B. Li, H.H. Liu, X.X. Zhang, MnO2/MWCNTs nanocomposites as highly efficient catalyst for indoor formaldehyde removal. J. Nanosci. Nanotechnol. 18, 3982–3990 (2018)

    CAS  PubMed  Article  Google Scholar 

  39. I.I. Kabir, Y. Fu, N.D. Souza, J.C. Baena, A.C.Y. Yuen, W. Yang, J. Mata, Z. Peng, G.H. Yeoh, PDMS/MWCNT nanocomposite films for underwater sound absorption applications. J. Mater. Sci. 55, 5048–5063 (2020)

    CAS  Article  Google Scholar 

  40. X.K. Wu, L. Chen, C. Zheng, X.X. Yan, P.Q. Dai, Q.T. Wang, W. Li, W.Z. Chen, Bubble-propelled micromotors based on hierarchical MnO2 wrapped carbon nanotube aggregates for dynamic removal of pollutants. RSC Adv. 10, 14846 (2020)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. W. Gao, J.H. Guo, J.B. Xiong, A.T. Smith, L.Y. Sun, Improving thermal, electrical and mechanical properties of fluoroelastomer/amino-functionalized multi-walled carbon nanotube composites by constructing dual crosslinking networks. Compos. Sci. Technol. 162, 49–57 (2018)

    CAS  Article  Google Scholar 

  42. J.F. Guan, J. Zou, Y.P. Liu, X.Y. Jiang, J.G. Yu, Hybrid carbon nanotubes modified glassy carbon electrode for selective, sensitive and simultaneous detection of dopamine and uric acid. Ecotoxicol. Environ. Saf. 201, 110872 (2020)

    CAS  PubMed  Article  Google Scholar 

  43. J.L. Zhang, X. Dai, Z.L. Song, R. Han, L.Z. Ma, G.C. Fan, X.L. Luo, One-pot enzyme- and indicator-free colorimetric sensing of glucose based on MnO2 nano-oxidizer. Sens. Actuators B Chem. 304, 127304 (2020)

    CAS  Article  Google Scholar 

  44. T. Han, S.G. Zhu, S.C. Wang, B.J. Wang, X.J. Zhang, G.F. Wang, Fluorometric methods for determination of H2O2, glucose and cholesterol by using MnO2 nanosheets modified with 5-carboxyfluorescein. Microchim. Act. 186, 269 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support was received from the National Natural Science Foundation of China (21864007, 21605029), Guizhou Provincial Natural Science Foundation (Qian Ke He Ji Chu [2020] 1Y042, [2017] 5788 Qian Ke He Platform for Talents, [2018]5781 Qian Ke He Platform for Talents).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bingqian Liu.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 557 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Su, L., Zhang, X., Su, Y. et al. A simple colorimetric method based on “on–off–on” mode for detection of H2S and Hg2+ in water. ANAL. SCI. (2022). https://doi.org/10.1007/s44211-022-00171-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s44211-022-00171-x

Keywords

  • Colorimetric
  • “On–off–on” mode
  • Detection of H2S
  • Detection of Hg2+