Skip to main content

Carbon-paste electrode modified by β-cyclodextrin as sensor for voltammetric determination of Tartrazine and Carmoisine from one drop

Abstract

For food quality control methods, low cost, speed, and simplicity are essential. Electrochemical methods can satisfy all of these requirements. In this paper, we propose a fast and simple voltammetric method using a carbon-paste electrode modified with β-cyclodestrin for the determination of two common food azo dyes: Tartrazine and Carmoisine. To reduce the amount of sample required for analysis, in this work, we explored the prospect of another methodology similar to adsorption stripping voltammetry. The redox behavior of dyes, the influence of pH and scan rate on oxidation currents were investigated. Based on the results the scheme of oxidation of azo dyes was proposed. The use of the proposed approach in combination with the developed sensor makes it possible to determine Tartrazine and Carmoisine within their concentrations of 314–5024 ng/mL and 167–5340 ng/mL with calculation LOD 101 ng/mL and 60 ng/mL respectively. The proposed sensor was tested during analysis of model solutions and soft drinks and showed good results with high reproducibility.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. D. Villaño, C. García-Viguera, P. Mena, Encycl. Food Health. 265 (2016)

  2. World Health Organization, WHO Technical Report Series: Evaluation of Certain Food Additives and Contaminants (Geneva, 1983).

  3. World Health Organization, WHO Technical Report Series: Evaluation of Certain Food Additives and Contaminants (2017).

  4. E. Food, S. Authority, EFSA J. 13, 4072 (2015)

    Article  CAS  Google Scholar 

  5. E. Panel, N. Sources, F. Ans, EFSA J. 7, 1331 (2009)

    Article  Google Scholar 

  6. S.C. DeVito, Crit. Rev. Environ. Sci. Technol. 23, 249 (1993)

    Article  Google Scholar 

  7. D. Bhatt, K. Vyas, S. Singh, P.J. John, I. Soni, Food Chem. Toxicol. 113, 322 (2018)

    CAS  PubMed  Article  Google Scholar 

  8. H. Imane, Int. J. Pharm. Pharm. Sci. 3, 159 (2014)

    Google Scholar 

  9. K.A. Amin, H. Abdel Hameid, A.H. Abd Elsttar, Food. Chem. Toxicol. 48, 2994 (2010)

    CAS  PubMed  Article  Google Scholar 

  10. K. Elbanna, O.M. Sarhan, M. Khider, M. Elmogy, H.H. Abulreesh, M.R. Shaaban, J. Food Drug. Anal. 25, 667 (2017)

    CAS  PubMed  Article  Google Scholar 

  11. Y. Gao, C. Li, J. Shen, H. Yin, X. An, H. Jin, J. Food Sci. 76, T125–T129 (2011)

    CAS  PubMed  Article  Google Scholar 

  12. B. J. Allen, F.R. Larry, Eletrochemical Methods: Fundamental and Applications (2004).

  13. A. Chebotarev, K. Pliuta, A. Koicheva, K. Bevziuk, D. Snigur, Anal. Lett. 51, 1520 (2018)

    CAS  Article  Google Scholar 

  14. K. Pliuta, A. Chebotarev, A. Koicheva, K. Bevziuk, D. Snigur, Anal. Methods 10, 1472 (2018)

    CAS  Article  Google Scholar 

  15. A. Chebotarev, K. Pliuta, D. Snigur, Turk. J. Chem. 42, 1534 (2018)

    CAS  Article  Google Scholar 

  16. K. Pliuta, A. Chebotarev, A. Pliuta, D. Snigur, Electroanalysis 33, 987 (2021)

    CAS  Article  Google Scholar 

  17. S.M. Ghoreishi, M. Behpour, M. Golestaneh, Anal. Methods 3, 2842 (2011)

    CAS  Article  Google Scholar 

  18. M. Wang, Y. Gao, Q. Sun, J. Zhao, J. Electrochem. Soc. 161, B297 (2014)

    CAS  Article  Google Scholar 

  19. X. Qiu, L. Lu, J. Leng, Y. Yu, W. Wang, M. Jiang, L. Bai, Food Chem. 190, 889 (2016)

    CAS  PubMed  Article  Google Scholar 

  20. S.M. Ghoreishi, M. Behpour, M. Golestaneh, Food Chem. 132, 637 (2012)

    CAS  PubMed  Article  Google Scholar 

  21. S.M. Ghoreishi, M. Behpour, M. Golestaneh, J. Chin. Chem. Soc. 60, 120 (2013)

    CAS  Article  Google Scholar 

  22. A. Chebotarev, A. Koicheva, K. Bevziuk, K. Pliuta, D. Snigur, J. Food Meas. Charact. 2019(13), 1964 (2019)

    Article  Google Scholar 

  23. A.N. Chebotarev, K.V. Pliuta, D.V. Snigur, Chem. Select 5, 3688 (2020)

    CAS  Google Scholar 

  24. C. Raril, J.G. Manjunatha, Port. Electrochim. Acta 39, 59 (2021)

    CAS  Article  Google Scholar 

  25. M. Chao, X. Ma, Food Anal. Methods 8, 130 (2015)

    Article  Google Scholar 

  26. G. Karim-Nezhad, Z. Khorablou, M. Zamani, P. Seyed Dorraji, M. Alamgholiloo, J. Food Drug Anal. 25, 293 (2017)

    CAS  PubMed  Article  Google Scholar 

  27. J. Penagos-Llanos, O. García-Beltrán, E. Nagles, J.J. Hurtado, Electroanalysis 32, 2174 (2020)

    CAS  Article  Google Scholar 

  28. M. Bijad, H. Karimi-Maleh, M. Farsi, S.A. Shahidi, J. Food Meas. Charact. 12, 634 (2018)

    Article  Google Scholar 

  29. S. Tajik, A. Lohrasbi-Nejad, P. Mohammadzadeh Jahani, M.B. Askari, P. Salarizadeh, H. Beitollahi, J. Food Meas. Charact. 16, 722 (2021)

    Article  Google Scholar 

  30. F. Garkani Nejad, I. Sheikhshoaie, H. Beitollahi, Food Chem. Toxicol. 162, 112864 (2022)

    CAS  PubMed  Article  Google Scholar 

  31. M.R. Majidi, R. Fadakar Bajeh Baj, A. Naseri, Food Anal. Methods 6, 1388 (2013)

    Article  Google Scholar 

  32. H.M. Nezhad, S.A. Shahidi, M. Bijad, Anal. Bioanal. Electrochem. 10, 220 (2018)

    CAS  Google Scholar 

  33. E.M.M. Del Valle, Process Biochem. 39, 1033 (2004)

    Article  CAS  Google Scholar 

  34. T. Ogoshi, A. Harada, Sensors 8, 4961 (2008)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. G. Astray, C. Gonzalez-Barreiro, J.C. Mejuto, R. Rial-Otero, J. Simal-Gándara, Food Hydrocolloids 23, 1631 (2009)

    CAS  Article  Google Scholar 

  36. F. Zhang, S. Gu, Y. Ding, Z. Zhang, L. Li, Anal. Chim. Acta 770, 53 (2013)

    CAS  PubMed  Article  Google Scholar 

  37. J. Zou, Z. Liu, Y. Guo, C. Dong, Anal. Methods 9, 134 (2017)

    CAS  Article  Google Scholar 

  38. S.J. Willyam, E. Saepudin, T.A. Ivandini, Anal. Methods 12, 3454 (2020)

    CAS  PubMed  Article  Google Scholar 

  39. N.F. Atta, A. Galal, D.M. El-Said, Can. J. Chem. 97, 805 (2019)

    CAS  Article  Google Scholar 

  40. M. Usman, A. Ahmed, B. Yu, S. Wang, Y. Shen, H. Cong, Carbohydr. Polym. 255, 117486 (2021)

    CAS  PubMed  Article  Google Scholar 

  41. E.Y. Ozmen, M. Sezgin, A. Yilmaz, M. Yilmaz, Bioresour. Technol. 99, 526 (2008)

    CAS  PubMed  Article  Google Scholar 

  42. Z. Karim, R. Adnan, Q. Husain, Int. Biodeterior. Biodegrad. 72, 10 (2012)

    CAS  Article  Google Scholar 

  43. A. Yilmaz, E. Yilmaz, M. Yilmaz, R.A. Bartsch, Dye. Pigment. 74, 54 (2007)

    CAS  Article  Google Scholar 

  44. A. Saifi, J.P. Joseph, A.P. Singh, A. Pal, K. Kumar, ACS Omega 6, 4776 (2021)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. K.Z. Brainina, N.A. Malakhova, N.Y. Stojko, Fresenius. J. Anal. Chem. 368, 307 (2000)

    CAS  PubMed  Article  Google Scholar 

  46. D. K. Gosser, Cyclic Voltammetry: Simulation and Analysis of Reaction Mechanisms (New York, 1994).

  47. P. Sierra-Rosales, C. Toledo-Neira, J.A. Squella, Sens. Actuators B Chem. 240, 1257 (2017)

    CAS  Article  Google Scholar 

  48. K. Bevziuk, A. Chebotarev, D. Snigur, Y. Bazel, M. Fizer, V. Sidey, J. Mol. Struct. 1144, 216 (2017)

    CAS  Article  Google Scholar 

  49. D.V. Snigur, A.N. Chebotarev, K.V. Bevziuk, J. Appl. Spectrosc. 85, 21 (2018)

    CAS  Article  Google Scholar 

  50. D. Snigur, M. Fizer, A. Chebotarev, O. Lukianova, O. Zhukovetska, Dye. Pigment. 198, 110028 (2022)

    CAS  Article  Google Scholar 

  51. A.N. Chebotarev, K.V. Bevziuk, D.V. Snigur, Y.R. Bazel, Russ. J. Phys. Chem. 91, 1907 (2017)

    CAS  Article  Google Scholar 

  52. D. Snigur, M. Fizer, A. Chebotarev, O. Lukianova, K. Bevziuk, J. Mol. Liq. 327, 114881 (2021)

    CAS  Article  Google Scholar 

  53. K. Bevziuk, A. Chebotarev, A. Koicheva, D. Snigur, Monatshefte Fur Chemie 149, 2153 (2018)

    CAS  Article  Google Scholar 

  54. B. Hosangadi, S. Palekar, J. Incl. Phenom. Mol. Recognit. Chem. 7, 321 (1989)

    CAS  Article  Google Scholar 

  55. C. Zhang, H. Chen, A.J. Guymon, G. Wu, R.G. Cooks, Z. Ouyang, on the inclusion complexes of cyclodextrin and sulphonated azo dyes by electrospray ionization mass spectrometry. Int. J. Mass Spectrom. 255–256, 1 (2006)

    Google Scholar 

  56. R. Li, Z.T. Jiang, Y.H. Liu, J. Food Drug Anal. 16, 91 (2008)

    Google Scholar 

  57. G. M. D. Ferreira, G. M. D. Ferreira, M. C. Hespanhol, J. de Paula Rezende, A. C. dos Santos Pires, L. V. A. Gurgel, L. H. M. da Silva, Colloids Surf. A Physicochem. Eng. Asp. 529, 531 (2017).

  58. K. Vytras, I. Švancara, K. Kalcher, A. Walcarius, Elecctroanalyses Wityh Carbon Paste Electrodes (2012).

  59. E. Laviron, J. Electroanal. Chem. 101, 19 (1979)

    CAS  Article  Google Scholar 

  60. Eurachem, The Fitness for Purpose of Analytical Methods: A Laboratory Guide to Method Validation and Related Topics (2014).

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

KP: investigation, writing-original draft preparation, and conceptualization; DS: methodology, writing-reviewing and editing, and visualization.

Corresponding author

Correspondence to Denys Snigur.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Informed consent

On behalf of other authors, informed consent was obtained from all individual participants included in the study.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 330 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pliuta, K., Snigur, D. Carbon-paste electrode modified by β-cyclodextrin as sensor for voltammetric determination of Tartrazine and Carmoisine from one drop. ANAL. SCI. (2022). https://doi.org/10.1007/s44211-022-00170-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s44211-022-00170-y

Keywords

  • Voltammetry
  • Carbon-paste electrode
  • Adsorption
  • Modification
  • Food azo dyes
  • β-Cyclodextrin