Skip to main content
Log in

Highly sensitive sensing and quantitative detection of sulfate ion with a SERS chip-based on boric acid’s Lewis effect

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Based on the Lewis acid’s coordination principle, a surface-enhanced Raman scattering (SERS) chip strategy had been developed for the ultrasensitive quantitation of SO42−. Through the immobilization of silver nanoparticles (Ag NPs) and the construction of the boric acid-based sensing unit, the chip system displayed outstanding merits on the direct sensing of SO42−, e.g., simple operation, ultra-high sensitivity, reproducibility, excellent selectivity and specificity. Moreover, an accurate evaluation was obtained by ratiometric calculations on characteristic peaks (1382 and 1070 cm−1) for quantitative detection of SO42−. The detection limit was down to 10 nM. Tap water, beer, and mineral water samples were tested, and high recoveries were achieved (97.12–110.12%). Besides, such SERS chip also displayed strong applicability for the evaluation of SO32−. Therefore, this SERS chip provided a promising idea for the quantification of trace amounts of SO42− and SO32− in the fields of food safety and environmental monitoring.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J. Wang, L. Liu, W. Xu, Z. Yang, Y. Yan, X. Xie, Y. Wang, T. Yi, C. Wang, J. Hua, Mitochondria-targeted ratiometric fluorescent probe based on diketopyrrolopyrrole for detecting and imaging of endogenous superoxide anion in vitro and in vivo. Anal. Chem. 91, 5786–7593 (2019)

    Article  CAS  Google Scholar 

  2. H. Zhou, Y. Zhao, G. Gao, S. Li, J. Lan, J. You, Highly selective fluorescent recognition of sulfate in water by two rigid tetrakisimidazolium macrocycles with peripheral chains. J. Am. Chem. Soc. 135, 14908–14911 (2013)

    Article  CAS  Google Scholar 

  3. L. Qin, A. Hartley, P. Turner, R.B.P. Elmes, K.A. Jolliffe, Macrocyclic squaramides: anion receptors with high sulfate binding affinity and selectivity in aqueous media. Chem. Sci. 7, 4563–4572 (2016)

    Article  CAS  Google Scholar 

  4. L.C. Backer, Assessing the acute gastrointestinal effects of ingesting naturally occurring, high levels of sulfate in drinking water. Crit. Rev. Clin. Lab. Sci. 37, 389–400 (2000)

    Article  CAS  Google Scholar 

  5. S.V. Lomako, R.I. Astapovich, O.V. Nozdrin-Plotnitskaya, T.E. Pavlova, S. Lei, V.A. Nazarov, E.B. Okaev, E.M. Rakhman’ko, V.V. Egorov, Sulfate-selective electrode and its application for sulfate determination in aqueous solutions. Anal. Chim. Acta 562, 216–222 (2006)

    Article  CAS  Google Scholar 

  6. M.A. Travassos Lemos, R.J. Cassella, D.P. de Jesus, A simple analytical method for determining inorganic anions and formate in virgin olive oils by capillary electrophoresis with capacitively coupled contactless conductivity detection. Food Control 57, 327–332 (2015)

    Article  CAS  Google Scholar 

  7. A.F. Campos, R.J. Cassella, Development of an extraction method for the determination of inorganic anions (chloride, sulfate and phosphate) in edible oils from different origins by ion chromatography. J. Food Sci. Technol. 55, 3922–3929 (2018)

    Article  CAS  Google Scholar 

  8. M. Colon, M. Iglesias, M. Hidalgo, J.L. Todolí, Sulfide and sulfate determination in water samples by means of hydrogen sulfide generation-inductively coupled plasma-atomic emission spectrometry. J. Anal. At. Spectrom. 23, 416–418 (2008)

    Article  CAS  Google Scholar 

  9. W. Ji, L. Li, Y. Zhang, X. Wang, Y. Ozaki, Recent advances in surface-enhanced Raman scattering-based sensors for the detection of inorganic ions: sensing mechanism and beyond. J. Raman Spectrosc. 52, 468–481 (2020)

    Article  Google Scholar 

  10. X.X. Han, R.S. Rodriguez, C.L. Haynes, Y. Ozaki, B. Zhao, Surface-enhanced Raman spectroscopy. Nat. Rev. Methods Prim. 1, 1–17 (2022)

    Google Scholar 

  11. H.-S. Su, H.-S. Feng, X. Wu, J.-J. Sun, B. Ren, Recent advances in plasmon-enhanced Raman spectroscopy for catalytic reactions on bifunctional metallic nanostructures. Nanoscale 13, 13962–13975 (2021)

    Article  CAS  Google Scholar 

  12. H. Ma, S. Liu, Y. Liu, J. Zhu, X.X. Han, Y. Ozaki, B. Zhao, In-situ fingerprinting phosphorylated proteins via surface-enhanced Raman spectroscopy: single-site discrimination of Tau biomarkers in Alzheimer’s disease. Biosens. Bioelectron. 171, 112748 (2021)

    Article  CAS  Google Scholar 

  13. H. Zhao, J. Jin, W. Tian, R. Li, Z. Yu, W. Song, Q. Cong, B. Zhao, Y. Ozaki, Three-dimensional superhydrophobic surface-enhanced Raman spectroscopy substrate for sensitive detection of pollutants in real environments. J. Mater. Chem. A 3, 4330–4337 (2015)

    Article  CAS  Google Scholar 

  14. C. Pan, H. Chen, Q. Lin, S. Luo, J. Gu, S. Ye, Y. Zeng, B. Ren, Z. Tian, W. Xue, G. Liu, Evaluation of the SERS-based strategy in fast and on-site food safety inspection: qualitative and quantitative analysis of trace unexpected herbicide in complicated herbicide matrix. J. Raman Spectrosc. 51, 2562–2567 (2020)

    Article  CAS  Google Scholar 

  15. M.L. Xu, Y. Gao, X.X. Han, B. Zhao, Detection of Pesticide Residues in Food Using Surface-Enhanced Raman Spectroscopy: A Review. J. Agric. Food Chem. 65, 6719–6726 (2017)

    Article  CAS  Google Scholar 

  16. L. Guerrini, R.A. Alvarez-Puebla, Multiplex SERS chemosensing of metal ions via DNA-mediated recognition. Anal. Chem. 91, 11778–11784 (2019)

    Article  CAS  Google Scholar 

  17. W. Ji, B. Zhao, Y. Ozaki, Semiconductor materials in analytical applications of surface-enhanced Raman scattering. J. Raman Spectrosc. 47, 51–58 (2016)

    Article  CAS  Google Scholar 

  18. W. Ji, L. Li, Y. Zhang, X. Wang, Y. Ozaki, Recent advances in surface-nhanced Raman scattering-based sensors for the detection of inorganic ions: sensing mechanism and beyond. J Raman Spectrosc 52, 468–481 (2021)

    Article  CAS  Google Scholar 

  19. Z.-Y. Chen, A. Gupta, S. Chattopadhyay, Detection of mercury in spiked cosmetics by surface enhanced Raman spectroscopy using silver shelled iron oxide nanoparticles. Sens. Actuators B 337, 129788 (2021)

    Article  CAS  Google Scholar 

  20. H. Zhuang, Z. Wang, X. Zhang, J.A. Hutchison, W. Zhu, Z. Yao, Y. Zhao, M. Li, A highly sensitive SERS-based platform for Zn(ii) detection in cellular media. Chem. Commun. 53, 1797–1800 (2017)

    Article  CAS  Google Scholar 

  21. I. Ravikumar, P. Ghosh, Recognition and separation of sulfate anions. Chem. Soc. Rev. 41, 3077–3098 (2012)

    Article  CAS  Google Scholar 

  22. N. Busschaert, L.E. Karagiannidis, M. Wenzel, C.J.E. Haynes, N.J. Wells, P.G. Young, D. Makuc, J. Plavec, K.A. Jolliffe, P.A. Gale, Synthetic transporters for sulfate: a new method for the direct detection of lipid bilayer sulfate transport. Chem. Sci. 5, 1118 (2014)

    Article  CAS  Google Scholar 

  23. B. Gao, Z.F. Liu, A first principles study on the solvation and structure of SO42- (H2O)n, n=6-12. J. Chem. Phys. 121, 8299–8306 (2004)

    Article  CAS  Google Scholar 

  24. V.J. Dungan, H.T. Ngo, P.G. Young, K.A. Jolliffe, High affinity sulfate binding in aqueous media by cyclic peptides with thiourea arms. Chem. Commun. 49, 264–266 (2013)

    Article  CAS  Google Scholar 

  25. R.B. Elmes, K.K. Yuen, K.A. Jolliffe, Sulfate-selective recognition by using neutral dipeptide anion receptors in aqueous solution. Chemistry 20, 7373–7380 (2014)

    Article  CAS  Google Scholar 

  26. S.K. Kim, J. Lee, N.J. Williams, V.M. Lynch, B.P. Hay, B.A. Moyer, J.L. Sessler, Bipyrrole-strapped calix[4]pyrroles: strong anion receptors that extract the sulfate anion. J. Am. Chem. Soc. 136, 15079–15085 (2014)

    Article  CAS  Google Scholar 

  27. P.A. Gale, J.R. Hiscock, C.Z. Jie, M.B. Hursthouse, M.E. Light, Acyclic indole and carbazole-based sulfate receptors. Chem. Sci. 1, 215 (2010)

    Article  CAS  Google Scholar 

  28. C.M. Lopez-Alled, A. Sanchez-Fernandez, K.J. Edler, A.C. Sedgwick, S.D. Bull, C.L. McMullin, G. Kociok-Kohn, T.D. James, J. Wenk, S.E. Lewis, Azulene-boronate esters: colorimetric indicators for fluoride in drinking water. Chem. Commun. 53, 12580–12583 (2017)

    Article  CAS  Google Scholar 

  29. L. Li, C. Wang, L. Yang, M. Su, F. Yu, L. Tian, H. Liu, Conformational sensitivity of surface selection rules for quantitative Raman identification of small molecules in biofluids. Nanoscale 10, 14342–14351 (2018)

    Article  CAS  Google Scholar 

  30. H. Li, H. Xia, D. Wang, X. Tao, Simple synthesis of monodisperse, quasi-spherical, citrate-stabilized silver nanocrystals in water. Langmuir 29, 5074–5079 (2013)

    Article  CAS  Google Scholar 

  31. F. Pi, P. Dillard, L. Limozin, A. Charrier, K. Sengupta, Nanometric protein-patch arrays on glass and polydimethylsiloxane for cell adhesion studies. Nano Lett. 13, 3372–3378 (2013)

    Article  CAS  Google Scholar 

  32. C.R. Wade, A.E.J. Broomsgrove, S. Aldridge, F.P. Gabbaï, Fluoride ion complexation and sensing using organoboron compounds. Chem. Rev. 110, 3958–3984 (2010)

    Article  CAS  Google Scholar 

  33. X. Yue, Y. Su, X. Wang, L. Li, W. Ji, Y. Ozaki, Reusable silicon-based sers chip for ratiometric analysis of fluoride ion in aqueous solutions. ACS Sens. 4, 2336–2342 (2019)

    Article  CAS  Google Scholar 

  34. H. Su, Y. Wang, Z. Yu, Y. Liu, X. Zhang, X. Wang, H. Sui, C. Sun, B. Zhao, Surface-enhanced Raman spectroscopy study on the structure changes of 4-mercaptophenylboronic acid under different pH conditions. Spectrochim. Acta, Part A 185, 336–342 (2017)

    Article  CAS  Google Scholar 

  35. K. Ariga, H. Ito, J.P. Hill, H. Tsukube, Molecular recognition: from solution science to nano/materials technology. Chem. Soc. Rev. 41, 5800–5835 (2012)

    Article  CAS  Google Scholar 

  36. R. Peng, Y. Si, T. Deng, J. Zheng, J. Li, R. Yang, W. Tan, A novel SERS nanoprobe for the ratiometric imaging of hydrogen peroxide in living cells. Chem. Commun. 52, 8553–8556 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Innovation and Entrepreneurship Projects and Six Talent Peaks Project of Jiangsu Province (No. SWYY-023); F.P. thanks for the support from National Natural Science Foundation of China (No. 21603087), Natural Science Foundation of Jiangsu Province (No. BK20160178).

Funding

Innovative Research Group Project of the National Natural Science Foundation of China, No. 21603087, Natural Science Foundation of Jiangsu Province, No. BK20160178, Six Talent Peaks Project in Jiangsu Province, No. SWYY-023.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuwei Pi.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 602 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Wan, Y., Liu, L. et al. Highly sensitive sensing and quantitative detection of sulfate ion with a SERS chip-based on boric acid’s Lewis effect. ANAL. SCI. 38, 1385–1394 (2022). https://doi.org/10.1007/s44211-022-00169-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44211-022-00169-5

Keywords

Navigation