Skip to main content
Log in

Analyses of chemiluminescence reactions of fluorophore-linked 1,2-dioxetane isomers in crystals heating at elevated temperature including a development of a simultaneous measurement method of thermal diffusivity and light emission for a single crystal

  • Rapid Communication
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

It has been found that a fluorophore-linked adamantylideneadamantane 1,2-dioxetane derivative showed an isomeric difference in the reactivities of crystalline-state chemiluminescence (CL) under isothermal heating conditions, while there are still unsolved problems on the conditions for intracrystalline reactions. To confirm the suitable heating conditions for initiating crystalline-state CL reactions of the isomers, the CL reactions in their crystal samples heated at elevated temperature were investigated with monitoring of CL light emission and thermogravimetry–differential thermal analysis (TG–DTA) measurements together with a simultaneous measurement method of thermal diffusivity and light emission, to provide the information on suitable temperature range for the crystalline-state CL reactions and on the reactivities depending on open and closed conditions of the crystal samples. The newly developed simultaneous measurement method provides a methodology for a single crystal to analyze the relationship between a change of the thermophysical property of inside of the crystal and the progress of a crystalline-state CL reaction.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary information file.

References

  1. F. Toda, Acc. Chem. Res. 28, 480 (1995)

    Article  CAS  Google Scholar 

  2. K. Tanaka, F. Toda, Chem. Rev. 100, 1025 (2000)

    Article  CAS  PubMed  Google Scholar 

  3. G. Kaupp, Cryst .Eng. Comm. 5, 117 (2003)

    Article  CAS  Google Scholar 

  4. G. Kaupp, in F. ed. by O.S.S. Reactions (Toda (Springer, Berlin, 2005), pp. 95–183

    Google Scholar 

  5. G. Kaupp, Cryst. Eng. Comm. 8, 794 (2006)

    Article  CAS  Google Scholar 

  6. G.M.J. Schmidt, J. Chem. Soc. 2014 (1964)

  7. G.M.J. Schmidt, Pure. Appl. Chem. 27, 647 (1971)

    Article  CAS  Google Scholar 

  8. M.D. Cohen Angew, Chem. Int. Ed. Engl. 14, 386 (1975)

    Article  Google Scholar 

  9. J.M. McBride, Acc. Chem Res. 16, 304 (1983)

    Article  CAS  Google Scholar 

  10. V. Ramamurthy, K. Venkatesan, Chem. Rev. 87, 433 (1987)

    Article  CAS  Google Scholar 

  11. A.E. Keating, M.A. Garcia-Garibay, in Organic and Inorganic Photochemistry, vol. 2, ed. by V. Ramamurthy, K. S. Schanze (Marcel Dekker, New York, 1989) pp. 195–248

  12. K. Biradha, R. Santra, Chem. Soc. Rev. 42, 950 (2013)

    Article  CAS  PubMed  Google Scholar 

  13. Chemiluminescence in Analytical Chemistry, ed. by A.M. García-Campaña, W.R.G. Baeyens (Marcel Dekker, New York, 2001)

  14. A. Roda, M. Guardigli, P. Pasini, M. Mirasoli, E. Michelini, M. Musiani, Anal. Chim. Acta 541, 25 (2005)

    Article  CAS  Google Scholar 

  15. Y. Yan, P. Shi, W. Song, S. Bi, Theranostics 9, 4047 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Y. Chen, A.J.H. Spiering, S. Karthikeyan, G.W.M. Peters, E.W. Meijer, R.P. Sijbesma, Nat. Chem. 4, 559 (2012)

    Article  CAS  PubMed  Google Scholar 

  17. E. Ducrot, Y.L. Chen, M. Bulters, R.P. Sijbesma, C. Creton, Science 344, 186 (2014)

    Article  CAS  PubMed  Google Scholar 

  18. Y. Yuan, Y.L. Chen, Chin. J. Polym. Sci. 35, 1315 (2017)

    Article  CAS  Google Scholar 

  19. Y.J. Chen, G. Mellot, D. van Luijk, C. Creton, R.P. Sijbesma, Chem. Soc. Rev. 50, 4100 (2021)

    Article  CAS  PubMed  Google Scholar 

  20. C. Moureau, C. Dufraise, C.L. Butler, Compt. Rend. Acad. Sci. 183, 101 (1926)

    CAS  Google Scholar 

  21. N. Watanabe, H. Takatsuka, H.K. Ijuin, A. Wakatsuki, M. Matsumoto, Tetrahedron Lett. 57, 2558 (2016)

    Article  CAS  Google Scholar 

  22. S. Schramm, D.P. Karothu, N.M. Lui, P. Commins, E. Ahmed, L. Catalano, L. Li, J. Weston, T. Moriwaki, K.M. Solntsev, P. Naumov, Nat. Commun. 10, 997 (2019)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. C. Matsuhashi, T. Ueno, H. Uekusa, A. Sato-Tomita, K. Ichiyanagi, S. Maki, T. Hirano, Chem. Comm. 56, 3369 (2020)

    Article  CAS  PubMed  Google Scholar 

  24. C. Matsuhashi, H. Fujisawa, M. Ryu, T. Tsujii, J. Morikawa, H. Oyama, H. Uekusa, S. Maki, T. Hirano, Bull. Che. Soc. Jpn. 95, 413 (2022)

    Article  CAS  Google Scholar 

  25. M. Kato, H. Ito, M. Hasegawa, K. Ishii, Chem. Eur. J. 25, 5105 (2019)

    Article  CAS  PubMed  Google Scholar 

  26. J.H. Wieringa, J. Strating, H. Wynberg, W. Adam, Tetrahedron. Lett. 13, 169 (1972)

    Article  Google Scholar 

  27. G.B. Schuster, N.J. Turro, H.C. Steinmetzer, A.P. Schaap, G. Faler, W. Adam, J.C. Liu, J. Am. Chem. Soc. 97, 7110 (1975)

    Article  CAS  Google Scholar 

  28. J.C. Hummelen, T.M. Luider, H. Wynberg, Pure. Appl. Chem. 59, 639 (1987)

    Article  CAS  Google Scholar 

  29. T. Hirano, C. Matsuhashi, J. Photochem. Photobiol. C 51, 100483 (2022)

    Article  CAS  Google Scholar 

  30. G.E. Ashby, J. Polym. Sci. 50, 99 (1961)

    Article  CAS  Google Scholar 

  31. D.J. David, Thermochim. Acta 3, 277 (1972)

    Article  CAS  Google Scholar 

  32. W.W. Wendlandt, Pure Appl. Chem. 61, 1339 (1989)

    Article  CAS  Google Scholar 

  33. I. Blakey, B. Goss, G. George, Aust. J. Chem. 59, 485 (2006)

    Article  CAS  Google Scholar 

  34. J. Morikawa, T. Hashimoto, Thermochim. Acta. 291, 352–353 (2000)

    Google Scholar 

  35. J. Morikawa, Y. Hashimoto, Thermochim. Acta 432, 216 (2005)

    Article  CAS  Google Scholar 

  36. J. Morikawa, T. Hashimoto, J. Appl. Phys. 105, 113506 (2009)

    Article  CAS  Google Scholar 

  37. J. Morikawa, A. Orie, T. Hashimoto, S. Juodkais, Appl. Phys. A 98, 551 (2010)

    Article  CAS  Google Scholar 

  38. J. Morikawa, A. Orie, T. Hashimoto, S. Juodkazis, Appl. Phys. A 101, 27 (2010)

    Article  CAS  Google Scholar 

  39. J. Morikawa, A. Orie, T. Hashimoto, S. Juodkazis, Opt. Exp. 18, 8300 (2010)

    Article  CAS  Google Scholar 

  40. J. Morikawa, A. Orie, Y. Hikima, T. Hhimoto, S. Juodkazis, Appl. Surf. Sci. 257, 5439 (2011)

    Article  CAS  Google Scholar 

  41. A. Orie, J. Morikawa, T. Hashimoto, Thermochim. Acta 532, 148 (2012)

    Article  CAS  Google Scholar 

  42. M. Ryu, H. Takezoe, O. Haba, K. Yonetake, J. Morikawa, Appl. Phys. Lett. 107, 221901 (2015)

    Article  CAS  Google Scholar 

  43. M. Ryu, Y. Cang, Z. Wang, G. Fytas, J. Morikawa, J. Phys. Chem. C 123, 17148 (2019)

    Article  CAS  Google Scholar 

  44. H. Fujisawa, M. Ryu, S. Lundgaard, D.P. Linklater, E.P. Ivanova, Y. Nishijima, S. Juodkazis, J. Morikawa, Micromachines 11, 738 (2020)

    Article  PubMed Central  Google Scholar 

  45. M. Ryu, J.C. Batsale, J. Morikawa, Int. J. Heat Mass Transfer 162, 120337 (2020)

    Article  CAS  Google Scholar 

  46. M. Ryu, S. Takamizawa, J. Morikawa, Appl. Phys. Lett. 119, 251902 (2021)

    Article  CAS  Google Scholar 

  47. S. Hasebe, Y. Hagiwara, J. Komiya, M. Ryu, H. Fujisawa, J. Morikawa, T. Katayama, D. Yamanaka, A. Furube, H. Sato, T. Asahi, H. Koshima, J. Am. Chem. Soc. 143(23), 8866 (2021)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI grants (JP17H06371 for TH; 18H04506 and 20H04663 for JM). This work was partially supported by a JSPS KAKENHI grant (JP18K05075) for TH and a JST CREST grant (no. JPMJCR19I3) for JM.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junko Morikawa or Takashi Hirano.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Appendix

Appendix

Supplementary Information The online version contains supplementary material available at http://doi.org/10.1246/cl.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsuhashi, C., Fujisawa, H., Ryu, M. et al. Analyses of chemiluminescence reactions of fluorophore-linked 1,2-dioxetane isomers in crystals heating at elevated temperature including a development of a simultaneous measurement method of thermal diffusivity and light emission for a single crystal. ANAL. SCI. 38, 1019–1024 (2022). https://doi.org/10.1007/s44211-022-00118-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44211-022-00118-2

Keywords

Navigation