Skip to main content

Inhibition of direct-electron-transfer-type bioelectrocatalysis of bilirubin oxidase by silver ions

Abstract

In enzyme-based biosensors, Ag+ eluted from the reference electrode inhibits the enzyme activity. Herein, to suppress the inhibition of bilirubin oxidase (BOD) by Ag+, kinetic analysis was used to examine the effect of Ag+ on the activity of BOD. It was confirmed that the addition of Ag+ decreased the bioelectrocatalytic activity of BOD. Atomic absorption spectroscopy (AAS) suggested that Ag+ was attached to BOD. Moreover, the changes in the visible absorption spectra after Ag+ addition showed that Ag+ was bound to the type I Cu sites in BOD. During oxygen reduction by BOD, the direct-electron-transfer-type bioelectrocatalytic current decreased after Ag+ was added. The decay of the catalytic current was evaluated using kinetic analysis (assuming a pseudo-first-order reaction). Based on the analysis, the inhibition of BOD was suppressed when the Ag+ concentration was below 0.1 µM. Referring to the solubility product of AgCl, Cl at a concentration of 1 mM suppressed the inhibition of the enzymatic activity by 95%.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. R.S. Freire, C.A. Pessoa, L.D. Mello, L.T. Kubota, J. Braz. Chem. Soc. 14, 230 (2003)

    CAS  Article  Google Scholar 

  2. J.E. Frew, H. Allen, Eur. J. Biochem. 172, 261 (1988)

    CAS  Article  Google Scholar 

  3. Y. Kamitaka, S. Tsujimura, N. Setoyama, T. Kajino, K. Kano, Phys. Chem. Chem. Phys. 9, 1793 (2007)

    CAS  Article  Google Scholar 

  4. A.L. Ghindilis, P. Atanasov, E. Wilkins, Electroanalysis 9, 661 (1997)

    CAS  Article  Google Scholar 

  5. A. Heller, Annu. Rev. Biomed. Eng. 1, 153 (1999)

    CAS  Article  Google Scholar 

  6. A. Heller, B. Feldman, Chem. Rev. 108, 2482 (2008)

    CAS  Article  Google Scholar 

  7. Y. Matsui, Y. Kitazumi, O. Shirai, K. Kano, Anal. Sci. 34, 1137 (2018)

    CAS  Article  Google Scholar 

  8. S. Tsujimura, H. Tatsumi, J. Ogawa, S. Shimizu, K. Kano, T. Ikeda, J. Electroanal. Chem. 496, 69 (2001)

    CAS  Article  Google Scholar 

  9. T. Sakurai, K. Kataoka, Chem. Rec. 7, 220 (2007)

    CAS  Article  Google Scholar 

  10. E.I. Solomon, U.M. Sundaram, T.E. Machonkin, Chem. Rev. 96, 2563 (1996)

    CAS  Article  Google Scholar 

  11. N. Mano, L. Edembe, Biosens. Bioelectron. 50, 478 (2013)

    CAS  Article  Google Scholar 

  12. M. Miyata, Y. Kitazumi, O. Shirai, K. Kataoka, K. Kano, J. Electroanal. Chem. 860, 113895 (2020)

    CAS  Article  Google Scholar 

  13. I.S. Chang, J.K. Jang, G.C. Gil, M. Kim, H.J. Kim, B.W. Cho, B.H. Kim, Biosens. Bioelectron. 19, 607 (2004)

    CAS  Article  Google Scholar 

  14. Y. Lei, R. Sun, X. Zhang, X. Feng, L. Jiang, Adv. Mater. 28, 1477 (2016)

    CAS  Article  Google Scholar 

  15. T. Kenzom, P. Srivastava, S. Mishra, Appl. Environ. Microbiol. 80, 7484 (2014)

    CAS  Article  Google Scholar 

  16. E.I. Solomon, M.J. Baldwin, M.D. Lowery, Chem. Rev. 92, 521 (1992)

    CAS  Article  Google Scholar 

  17. J.A. Cracknell, T.P. McNamara, E.D. Lowe, C.F. Blanford, Dalton Trans. 40, 6668 (2011)

    CAS  Article  Google Scholar 

  18. H.S. Jiang, Y. Zhang, Z.W. Lu, R. Lebrun, B. Gontero, W. Li, Small 15, 1 (2019)

    Google Scholar 

  19. A. Käkinen, F. Ding, P. Chen, M. Mortimer, A. Kahru, P.C. Ke, Nanotechnology 24, 1 (2013)

    Article  Google Scholar 

  20. H. Wang, X. Yang, M. Wang, M. Hu, X. Xu, A. Yan, Q. Hao, H. Li, H. Sun, Chem. Sci. 11, 11714 (2020)

    CAS  Article  Google Scholar 

  21. J.K. Ma, G.R. Bishop, V.L. Davidson, Arch. Biochem. Biophys. 444, 27 (2005)

    CAS  Article  Google Scholar 

  22. A. Shimizu, T. Sasaki, J.H. Kwon, A. Odaka, T. Satoh, N. Sakurai, T. Sakurai, S. Yamaguchi, T. Samejima, J. Biochem. 125, 662 (1999)

    CAS  Article  Google Scholar 

  23. R.H. Holm, P. Kennepohl, E.I. Solomon, Chem. Rev. 96, 2239 (1996)

    CAS  Article  Google Scholar 

  24. S.K. Singh, S.A. Roberts, S.F. McDevitt, A. Weichsel, G.F. Wildner, G.B. Grass, C. Rensing, W.R. Montfort, J. Biol. Chem. 286, 37849 (2011)

    CAS  Article  Google Scholar 

  25. M. Meury, M. Knop, F.P. Seebeck, Angew. Chem. Int. Ed. 129, 8227 (2017)

    Article  Google Scholar 

  26. F. Long, C.C. Su, M.T. Zimmermann, S.E. Boyken, K.R. Rajashankar, R.L. Jernigan, E.W. Yu, Nature 467, 484 (2010)

    CAS  Article  Google Scholar 

  27. M. Jönsson-Niedziolka, A. Kaminska, M. Opallo, Electrochim. Acta 55, 8744 (2010)

    Article  Google Scholar 

  28. Y. Miura, S. Tsujimura, S. Kurose, Y. Kamitaka, K. Kataoka, T. Sakurai, K. Kano, Fuel Cells 9, 70 (2009)

    CAS  Article  Google Scholar 

  29. C.H. Gammons, Y. Yu, Chem. Geol. 137, 155 (1997)

    CAS  Article  Google Scholar 

Download references

Funding

This work was supported by JSPS KAKENHI (Grant Number JP21H01961).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuki Kitazumi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Makizuka, T., Sowa, K., Shirai, O. et al. Inhibition of direct-electron-transfer-type bioelectrocatalysis of bilirubin oxidase by silver ions. ANAL. SCI. 38, 907–912 (2022). https://doi.org/10.1007/s44211-022-00111-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44211-022-00111-9

Keywords

  • Redox enzyme
  • Type I copper
  • Oxygen reduction
  • Amperometric biosensor
  • Silver
  • Silver-chloride electrode