Skip to main content
Log in

Spectroscopic study of cyclen-based 19F NMR probe for detection of hydrogen sulfide

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

A cyclen-based 19F NMR probe (F-cyclen) for hydrogen sulfide (H2S) has been prepared and evaluated for its complex formation ability with Cu2+ ions and responsivity to H2S. F-Cyclen was readily synthesized by reacting cyclen with 4-(trifluoromethyl)benzyl bromide. Visible absorption spectrophotometry showed that, same as the original cyclen, F-cyclen formed a 1:1 complex with Cu2+ ions. The 19F NMR signal of F-cyclen at 16.5 ppm gradually decreased in intensity with increasing CuCl2 concentration, with trifluoromethane sulfonic acid sodium salt (TFMSNa) used as an internal standard (0 ppm). When the Cu2+–F-cyclen complex was subjected to an increasing concentration of Na2S (as H2S donor), its corresponding 19F NMR signal of F-cyclen at 16.5 ppm gradually increased in intensity. The regression curve between the 19F NMR signal intensity ratio of F-cyclen to TFMSNa and Na2S concentration showed good linearity (r = 0.986) over the Na2S concentration range of 25–150 μM.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. G.D. Yang, L.Y. Wu, B. Jiang, W. Yang, J.S. Qi, K. Cao, Q.H. Meng, A.K. Mustafa, W.T. Mu, S.M. Zhang, S.H. Snyder, R. Wang, Science 322, 587 (2008). https://doi.org/10.1126/science.1162667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. B.D. Paul, S.H. Snyder, Nat. Rev. Mol. Cell Biol. 13, 499 (2012). https://doi.org/10.1038/nrm3391

    Article  CAS  PubMed  Google Scholar 

  3. K. Abe, H. Kimura, J. Neurosci. 16, 1066 (1996). https://doi.org/10.1523/JNEUROSCI.16-03-01066.1996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Y. Kimura, H. Kimura, FASEB J. 18, 1165 (2004). https://doi.org/10.1096/fj.04-1815fje

    Article  CAS  PubMed  Google Scholar 

  5. W. Yang, G.D. Yang, X.M. Jia, L.Y. Wu, R. Wang, J. Physiol. 569, 519 (2005). https://doi.org/10.1113/jphysiol.2005.097642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Y. Kaneko, Y. Kimura, H. Kimura, I. Niki, Diabetes 55, 1391 (2006). https://doi.org/10.2337/db05-1082

    Article  CAS  PubMed  Google Scholar 

  7. L. Li, M. Bhatia, Y.Z. Zhu, Y.C. Zhu, R.D. Ramnath, Z.J. Wang, F.B.M. Anuar, M. Whiteman, M. Salto-Tellez, P.K. Moore, FASEB J. 19, 1196 (2005). https://doi.org/10.1096/fj.04-3583fje

    Article  CAS  PubMed  Google Scholar 

  8. R.C.O. Zanardo, V. Brancaleone, E. Distrutti, S. Fiorucci, G. Cirino, J.L. Wallace, FASEB J. 20, 2118 (2006). https://doi.org/10.1096/fj.06-6270fje

    Article  CAS  PubMed  Google Scholar 

  9. Y.J. Peng, J. Nanduri, G. Raghuraman, D. Souvannakitti, M.M. Gadalla, G.K. Kumar, S.H. Snyder, N.R. Prabhakar, Proc. Natl. Acad. Sci. U. S. A. 107, 10719 (2010). https://doi.org/10.1073/pnas.1005866107

    Article  PubMed  PubMed Central  Google Scholar 

  10. V. Kuban, P.K. Dasgupta, J.N. Marx, Anal. Chem. 64, 36 (1992). https://doi.org/10.1021/ac00025a008

    Article  CAS  PubMed  Google Scholar 

  11. N.S. Lawrence, R.P. Deo, J. Wang, Anal. Chim. Acta 517, 131 (2004). https://doi.org/10.1016/j.aca.2004.03.101

    Article  CAS  Google Scholar 

  12. D.M. Tsai, A.S. Kumar, J.M. Zen, Anal. Chim. Acta 556, 145 (2006). https://doi.org/10.1016/j.aca.2005.05.038

    Article  CAS  PubMed  Google Scholar 

  13. C.M. Klingerman, N. Trushin, B. Prokopczyk, P. Haouzi, Am. J. Physiol.: Regul. Integr. Comp. Physiol. 305, R630 (2013). https://doi.org/10.1152/ajpregu.00218.2013

    Article  CAS  Google Scholar 

  14. M. Nishida, T. Sawa, N. Kitajima, K. Ono, H. Inoue, H. Ihara, H. Motohashi, M. Yamamoto, M. Suematsu, H. Kurose, A. van der Vliet, B.A. Freeman, T. Shibata, K. Uchida, Y. Kumagai, T. Akaike, Nat. Chem. Biol. 8, 714 (2012). https://doi.org/10.1038/nchembio.1018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. L.A. Montoya, T.F. Pearce, R.J. Hansen, L.N. Zakharov, M.D. Pluth, J. Org. Chem. 78, 6550 (2013). https://doi.org/10.1021/jo4008095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. D. Jiménez, R. Martínez-Máñez, F. Sancenón, J.V. Ros-Lis, A. Benito, J. Soto, J. Am. Chem. Soc. 125, 9000 (2003). https://doi.org/10.1021/ja0347336

    Article  CAS  PubMed  Google Scholar 

  17. B. Spilker, J. Randhahn, H. Grabow, H. Beikirch, P. Jeroschewski, J. Electroanal. Chem. 612, 121 (2008). https://doi.org/10.1016/j.jelechem.2007.09.019

    Article  CAS  Google Scholar 

  18. P.R. Bérubé, P.D. Parkinson, E.R. Hall, J. Chromatogr. A 830, 485 (1999). https://doi.org/10.1016/S0021-9673(98)00882-6

    Article  Google Scholar 

  19. Y. Iwamuro, T. Murakami, R. Ishimaru, Y. Sakamoto, S. Chinaka, Jpn. J. Forensic. Sci. Tech. 25, 151 (2020). https://doi.org/10.3408/jafst.769

    Article  Google Scholar 

  20. K. Sasakura, K. Hanaoka, N. Shibuya, Y. Mikami, Y. Kimura, T. Komatsu, T. Ueno, T. Terai, H. Kimura, T. Nagano, J. Am. Chem. Soc. 133, 18003 (2011). https://doi.org/10.1021/ja207851s

    Article  CAS  PubMed  Google Scholar 

  21. T. Koike, T. Watanabe, S. Aoki, E. Kimura, M. Shiro, J. Am. Chem. Soc. 118, 12696 (1996). https://doi.org/10.1021/ja962527a

    Article  CAS  Google Scholar 

  22. J.Y. Yoon, N.E. Ohler, D.H. Vance, W.D. Aumiller, A.W. Czarnik, Tetrahedron Lett. 38, 3845 (1997). https://doi.org/10.1016/S0040-4039(97)00768-5

    Article  CAS  Google Scholar 

  23. J. Ding, Y. Ge, B. Zhu, Anal. Sci. 29, 1171 (2013). https://doi.org/10.2116/analsci.29.1171

    Article  CAS  PubMed  Google Scholar 

  24. Z. Ye, X. An, B. Song, W. Zhang, Z. Dai, J. Yuan, Dalton Trans. 43, 13055 (2014). https://doi.org/10.1039/C4DT01333F

    Article  CAS  PubMed  Google Scholar 

  25. J. Liu, X. Guo, R. Hu, X. Liu, S. Wang, S. Li, Y. Li, G. Yang, Anal. Chem. 88, 1052 (2016). https://doi.org/10.1021/acs.analchem.5b04248

    Article  CAS  PubMed  Google Scholar 

  26. S. Palanisamy, L.-Y. Lee, Y.-L. Wang, Y.-J. Chen, C.-Y. Chen, Y.-M. Wang, Talanta 147, 445 (2016). https://doi.org/10.1016/j.talanta.2015.10.019

    Article  CAS  PubMed  Google Scholar 

  27. Y. Yang, Y. Lei, X. Zhang, S. Zhang, Talanta 154, 190 (2016). https://doi.org/10.1016/j.talanta.2016.03.066

    Article  CAS  PubMed  Google Scholar 

  28. H. Zhu, C. Liu, H. Zhang, P. Jia, Z. Li, X. Zhang, Y. Yu, W. Sheng, B. Zhu, Anal. Sci. 36, 255 (2020). https://doi.org/10.2116/analsci.19P214

    Article  CAS  PubMed  Google Scholar 

  29. K. Zhang, J. Meng, W. Bao, M. Liu, X. Wang, Z. Tian, Anal. Bioanal. Chem. 413, 1215 (2021). https://doi.org/10.1007/s00216-020-03086-6

    Article  CAS  PubMed  Google Scholar 

  30. S. Sarkar, Y.S. Ha, N. Soni, G.I. An, W. Lee, M.H. Kim, P.T. Huynh, H. Ahn, N. Bhatt, Y.J. Lee, J.Y. Kim, K.M. Park, I. Ishii, S.-G. Kang, J. Yoo, Angew. Chem. Int. Ed. 55, 9365 (2016). https://doi.org/10.1002/anie.201603813

    Article  CAS  Google Scholar 

  31. K. Kitamura, A.A. Omran, S. Takegami, R. Tanaka, T. Kitade, Anal. Bioanal. Chem. 387, 2843 (2007). https://doi.org/10.1007/s00216-007-1162-x

    Article  CAS  PubMed  Google Scholar 

  32. S. Takegami, H. Katsumi, K. Asai, D. Fujii, T. Fujimoto, H. Kawakami, T. Tokuyama, A. Konishi, A. Yamamoto, T. Kitade, Pharm. Anal. Acta 6, 1000338 (2015). https://doi.org/10.4172/2153-2435.1000339

    Article  CAS  Google Scholar 

  33. S. Takegami, A. Konishi, S. Okazaki, M. Fujiwara, T. Kitade, J. Microencapsulation 36, 738 (2019). https://doi.org/10.1080/02652048.2019.1671909

    Article  CAS  PubMed  Google Scholar 

  34. H. Nakamura, FT-NMR data processing by personal computers, 2nd edn. (Sankyo-shuppan, Tokyo, 2009)

  35. E.A. Wintner, T.L. Deckwerth, W. Langston, A. Bengtsson, D. Leviten, P. Hill, M.A. Insko, R. Dumpit, E. VandenEkart, C.F. Toombs, C. Szabo, Br. J. Pharmacol. 160, 941 (2010). https://doi.org/10.1111/j.1476-5381.2010.00704.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. H. Kimura, Antioxid. Redox Signaling 22, 362 (2015). https://doi.org/10.1089/ars.2014.5869

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank two undergraduate students, Mr. D. Yamamoto and Mr. Y. Hariki, for their experimental assistance. We also thank Simon Partridge, PhD, from Edanz (https://jp.edanz.com/ac) for editing a draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigehiko Takegami.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 96 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takegami, S., Aramoto, Y. & Konishi, A. Spectroscopic study of cyclen-based 19F NMR probe for detection of hydrogen sulfide. ANAL. SCI. 38, 813–820 (2022). https://doi.org/10.1007/s44211-022-00100-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44211-022-00100-y

Keywords

Navigation