Skip to main content

An application study of membraneless-gas separation microfluidic paper-based analytical device for monitoring total ammonia in fish pond water using natural reagent

Abstract

The membraneless-gas separation microfluidic paper-based analytical device (ML-GS μPAD), consisting of donor, spacer, and acceptor layers, was developed to monitor total ammonia in fish pond water. The principle of the analysis involved the addition of sodium hydroxide solution to the sample zone in the donor layer containing ammonia/ammonium, and the produced ammonia gas diffuses through the spacer to the detection zone in the acceptor layer containing red rose extract to produce a color change from pink to blue corresponding to the ammonia/ammonium concentration. Under optimum conditions, the proposed method provided good linearity of ammonia in the range concentration of 0–100 mg L−1 (R2 = 0.9993) with LOD and LOQ of 2.25 and 7.51 mg L−1, respectively. This method was successfully applied to fish pond water samples without significant influence of interfering compounds with recoveries in the range of 103–110%, indicating good selectivity and accuracy of the proposed method.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. R.S. Medeiros, B.A. Lopez, L.A. Sampaio, L.A. Romano, R.V. Rodrigues, Aquac. Int. 24, 985 (2016)

    CAS  Article  Google Scholar 

  2. S. Wahyuningsih, A.M. Gitarama, JSL 5, 112 (2020)

    Google Scholar 

  3. E. Barbieri, R.M. Lenz, A.A. Nascimento, G.L. Almeida, L.Y. Roselli, M.B. Henriques, Bol Inst Pesca 45, 440 (2019)

    CAS  Google Scholar 

  4. D.J. Randall, T.K.N. Tsui, Mar. Pollut. Bull. 45, 17 (2002)

    CAS  Article  PubMed  Google Scholar 

  5. Aquatic Life Criteria—Ammonia, Compilation prepared by United States Environmental Protection Agency (US EPA), https://www.epa.gov/wqc/aquatic-life-criteria-ammonia.

  6. D. Apriyanti, V.I. Santi, Y.D.I. Siregar, Ecolab 7, 60 (2013)

    Article  Google Scholar 

  7. A.E. Greenberg, L.S. Clesceri, A.D. Eaton, Standard Methods for the Examination of Water and Wastewater, 18th., (American Public Health Association, NW Washington, 1992)

  8. H. Sulistyarti, B.I.P Sutrisno, E. Sulistyo, in Proceedings of the Sond International Seminar of Smart Molecule of Natural Resources, (Malang, Indonesia, 2020), p. 1665.

  9. Y. Liang, C. Yan, Q. Guo, J. Xu, H. Hu, Anal. Chem. Res. 10, 1 (2016)

    Article  Google Scholar 

  10. T. Shoji, E. Nakamura, J. Flow Inject. Anal. 26, 37 (2009)

    CAS  Google Scholar 

  11. J.J. Peters, M.I.G.S. Almeida, L.O. Šraj, I.D. McKelvie, S.D. Kolev, Anal. Chim. Acta. 1079, 120 (2019)

    CAS  Article  PubMed  Google Scholar 

  12. P. Phansi, S. Sumantakul, T. Wongpakdee, N. Fukana, N. Ratanawimarnwong, J. Sitanurak, D. Nacapricha, Anal. Chem. 88, 8749 (2016)

    CAS  Article  PubMed  Google Scholar 

  13. B.M. Jayawardane, I.D. McKelvie, S.D. Kolev, Anal. Chem. 87, 4621 (2015)

    CAS  Article  PubMed  Google Scholar 

  14. N.L. Nxumalo, L.M. Madikizela, H.G. Kruger, S.C. Onwubu, P.S. Mdluli, Water SA 46, 506 (2020)

    CAS  Google Scholar 

  15. T. Sukaram, P. Sirisakwisut, J. Sirirak, D. Nacapricha, S. Chaneam, Int. J. Environ. Anal. Chem. 98, 907 (2018)

    CAS  Article  Google Scholar 

  16. N. Chigurupati, L. Saiki, C. Gayser, A.K. Dash, Int. J. Pharm. 241, 293 (2002)

    CAS  Article  PubMed  Google Scholar 

  17. M. Paristiowati, M. Moersilah, M.M. Stephanie, Z. Zulmanelis, R. Idroes, R.A. Puspita, in Proceedings of the Forth Annual Applied Science and Engineering Conference, (Bali, Indonesia, 2019), p. 1402.

  18. S.I.R. Okoduwa, L.O. Mbora, M.E. Adu, A.A. Adeyi, Biochem. Res. Int. 2015, 1 (2015)

    Article  Google Scholar 

  19. T.N. Pham, T.Q. Toan, T.D. Lam, H. Vu-Quang, D.N. Vo, T.A. Vy, L.M. Bui, in Proceedings of the Sixth International Conference on Mechanical Engineering, Materials Science and Civil Engineering (Xiamen, China, 2018), p. 542.

  20. B. Wiyantoko, A. Astuti, IJCA 3, 22 (2020)

    Article  Google Scholar 

  21. O. Dangles, J.A. Fenger, Molecules 2018, 23 (1970)

    Google Scholar 

  22. T. Goto, Structure, Stability and Color Variation of Natural Anthocyanins, ed. W. Herz, H. Grisebach, G. W. Kirby, Ch. Tamm, Vol. 52, (Springer, Vienna, 1987), p. 113–158.

  23. N. Fauziyah, Andini, Anneke, I. Oktavia, M.I. Sari, H. Sulistyarti, A. Sabarudin, in Proceedings of the Ninth Annual Basic Science International Conference, (Malang, Indonesia, 2019), p. 546.

  24. I.W. Mahdiasanti, A. Sabarudin, H. Sulistyarti, in Proceedings of the Ninth Annual Basic Science International Conference, (Malang, Indonesia, 2019), p. 546.

  25. H. Sulistyarti, P.A. Puspitaloka, B.I. Putra, R. Retnowati, H. Tolle, Makara J. Sci. 25, 108 (2021)

    CAS  Google Scholar 

  26. Y. F. Wisang, H. Sulistyarti, U. Andayani, A. Sabarudin, in Proceedings of the Ninth Annual Basic Science International Conference, (Malang, Indonesia, 2019), p. 546.

  27. S. Farooq, M.A. Shah, M.W. Siddiqui, B.N. Dar, S.A. Mir, A. Ali, J. Food Meas. Charact. 14, 3508 (2020)

    Article  Google Scholar 

  28. T.Y. Hendrawati, A. Rahmawati, in Proceedings of the Sond International Multidisciplinary Conference, (Jakarta, Indonesia, 2016), p. 12.

  29. A. Shrivastava, V. Gupta, J. Pharm. Bioallied Sci. 2, 21 (2011)

    Google Scholar 

  30. J.H. Lee, H.J. Lee, M.G. Choung, Food Chem. 129, 272 (2011)

    CAS  Article  PubMed  Google Scholar 

  31. S. Wahyuningsih, L. Wulandari, M.W. Wartono, H. Munawaroh, A.H. Ramelan, in Proceedings of International Conference on Food Science and Engineering, (Surakarta, Indonesia, 2017), p. 193.

  32. P.H. Março, R.J. Poppi, I.S. Scarminio, R. Tauler, Food Chem. 125, 1020 (2011)

    Article  Google Scholar 

  33. X. He, X. Li, Y. Lv, Q. He, Food Sci. Technol. 35, 468 (2015)

    Article  Google Scholar 

  34. P.U. Uzukwu, Cont. J. Biol. Sci. 6, 16 (2013)

    Google Scholar 

  35. J.A. Hargreaves, C.S. Tucker, Managing Ammonia in Fish Pond Water, (Southern Regional Aquaculture Center, United States, 2004).

Download references

Acknowledgements

The authors are grateful to the University of Brawijaya, Malang, Indonesia for financial support through “Hibah Penelitian Unggulan 2020 No. DIPA-042.01.2.400919/2020” research grants and research facilities. Special gratitude is addressed to Professor Vichai Reutrakul, the director of The Center of Excellence for Innovation in Chemistry, Thailand for invitation to conduct a research visit on production of environmentally friendly membraneless-gas separation microfluidic paper-based analytical devices (ML-GS µPAD Design 1 used in this work) under his and Prof. Duagjai Nacapricha’s supervision at the Department of Chemistry, Faculty of Science, Mahidol University, Thailand 2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hermin Sulistyarti.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 411 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mufidah Sari, P., Daud, A., Sulistyarti, H. et al. An application study of membraneless-gas separation microfluidic paper-based analytical device for monitoring total ammonia in fish pond water using natural reagent. ANAL. SCI. 38, 759–767 (2022). https://doi.org/10.1007/s44211-022-00092-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44211-022-00092-9

Keywords

  • ML-GS µPAD
  • Ammonia
  • Ammonium
  • Red rose
  • Fish pond water