Skip to main content

Improvement of spatial resolution of elemental imaging using laser ablation-ICP-mass spectrometry

Abstract

Laser ablation-ICP-mass spectrometer (LA-ICPMS) now becomes one of the most principal analytical technique for mapping analysis for major to trace elements in rocks, minerals, functional materials, or biological tissue samples. In this study, imaging analysis was conducted with coupling of small volume cell and off-set laser ablation protocol to improve the spatial resolution. Combination of newly designed small volume cell and in-torch gas mixing protocols provides faster washout time of the signals (about 0.8 s for reducing 238U being one part in a hundred, 1% level). This is very important to improve the spatial resolution in a direction of laser scanning. Moreover, combination of small distances between the laser-line scan (laser pitch distance) and preferential and total ablation of only biological tissue samples placed on glass substrate results in laser ablation of smaller areas than the size of laser ablation pit (shaving ablation). With the shaving ablation, laser-line scanning with narrower-band width (e.g., 2 µm) can be achieved even by the laser beam of 8 µm diameter. To demonstrate the practical usage of the present technique, imaging analysis of Gd-ethylenediamine tetra-methylene phosphonic acid-doped mouse bone was conducted. Preferential distribution of Gd at the edge of the apatite cell was more clearly identified by the present technique. Combination of the shorter washout system setup and the shaving ablation protocol enables us to improve the spatial resolution of the elemental imaging obtained with the LA-ICPMS technique.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. J.S. Becker, Inorganic Mass Spectrometry: Principles and Applications (Wiley, Chichester, 2007)

    Book  Google Scholar 

  2. J.S. Becker, M. Zoriy, J.S. Becker, J. Dobrowolska, A. Matusch, J. Anal. At. Spectrom. 22, 736 (2007)

    CAS  Article  Google Scholar 

  3. Y. Ye, H. Wang, X. Wang, L. Zhai, C. Wu, S. Zhang, Palaeogeogr. Palaeoclimatol. Palaeoecol. 538, 109459 (2020)

    Article  Google Scholar 

  4. S. Shimma, Y. Makino, K. Kojima, T. Hirata, Mass Spectrom. 9(1), A0086 (2020). https://doi.org/10.5702/massspectrometry.A0086

    CAS  Article  Google Scholar 

  5. Y. Tanaka, N. Yajima, M. Okada, T. Matsumoto, Y. Higuchi, S. Miyazaki, H. Yamato, T. Hirata, Analyst 142, 4256 (2017)

    Article  Google Scholar 

  6. D. Pozebon, G.L. Scheffler, V.L. Dressler, J. Anal. At. Spectrom. 32, 890 (2017)

    CAS  Article  Google Scholar 

  7. B. Neumann, S. Hösl, K. Schwab, F. Theuring, N. Jakubowski, J. Neurosci. Methods 334, 108591 (2020). https://doi.org/10.1016/j.jneumeth.2020.108591

    CAS  Article  PubMed  Google Scholar 

  8. W. Lee, K. Jung, J. Park, J.Y. Kim, Y.J. Lee, Y. Chang, J. Yoo, Biochem. Biophys. Res. Commun. 568, 23 (2021)

    CAS  Article  Google Scholar 

  9. T. Hirata, R.W. Nesbitt, Geochim. Cosmochim. Acta 59, 2491 (1995)

    CAS  Article  Google Scholar 

  10. D. Drescher, C. Giesen, H. Traub, U. Panne, J. Kneipp, N. Jakubowski, Anal. Chem. 84(22), 9684 (2012)

    CAS  Article  Google Scholar 

  11. S. Malderen, A.J. Managh, B.L. Sharpb, F. Vanhaecke, J. Anal. At. Spectrom. 31, 423 (2016)

    Article  Google Scholar 

  12. T. Kawamoto, Arch. Histol. Cytol. 66, 123 (2003)

    Article  Google Scholar 

  13. R.K. Adair, Rev. Mod. Phys. 22, 249–289 (1950)

    CAS  Article  Google Scholar 

  14. R. B. Firestone, V. S. Shirley, in Table of Isotopes, ed. R. B. Firestone, V. S. Shirley, 8th ed., 157Gd, (Wiley, New York, 1996), pp. 1716–1719

  15. J. Bigeleisen, M.G. Mayer, J. Chem. Phys. 15, 261 (1947)

    CAS  Article  Google Scholar 

  16. T. Hirata, R.W. Nesbitt, Geochim. Cosmochim. Acta. 59, 2491–2500 (1995)

    CAS  Article  Google Scholar 

  17. T. Iizuka, T. Hirata, Geochem. J. 38, 229–241 (2004)

    CAS  Article  Google Scholar 

  18. S. Sakata, K. Hattori, H. Iwano, T.D. Yokoyama, T. Danhara, T. Hirata, Geostand. Geoanal. Res. 38, 409–420 (2014)

    CAS  Article  Google Scholar 

  19. N.J.G. Pearce, W.T. Perkins, J.A. Westgate, M.P. Gorton, S.E. Jackson, C.R. Neal, S.P. Chenery, Geostand. Newslett. 21, 115–144 (1997)

    CAS  Article  Google Scholar 

  20. Y. Makino, S. Ohara, M. Yamada, S. Mukoyama, K. Hattori, S. Sakata, Y. Tanaka, T. Suzuki, A. Shinohara, T. Matsukawa, K. Yokoyama, T. Hirata, in Metallomics, (Springer, Tokyo, 2017), pp. 93–106.

  21. T. Suzuki, S. Sakata, Y. Makino, H. Obayashi, S. Ohara, K. Hattori, T. Hirata, Mass Spectrom. 7, 3 (2018)

    Google Scholar 

  22. C. M. Weaver in Present Knowledge in Nutrition, ed. B. A. Bowman, R. M. Russel, 8th ed., (ILSI Press, Washington DC., 2001), pp. 273–280

Download references

Acknowledgements

We are grateful to Dr. Shuji Yamashita (The Univ. Tokyo) for scientific advice. This work was financially supported by a Grant-in-Aid for Scientific Research (A26247094, JP19H01081) from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takafumi Hirata.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tanaka, E., Matsukawa, T., Kuroki, Y. et al. Improvement of spatial resolution of elemental imaging using laser ablation-ICP-mass spectrometry. ANAL. SCI. 38, 695–702 (2022). https://doi.org/10.1007/s44211-022-00085-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44211-022-00085-8

Keywords

  • Laser ablation
  • ICP mass spectrometry
  • Imaging
  • Neutron capture therapy