Skip to main content
Log in

Development of an odorant sensor with a cell-free synthesized olfactory receptor and a graphene field-effect transistor

  • Rapid Communication
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Animals sense odorants using olfactory receptors. Many trials have been conducted to develop artificial odorant sensors using olfactory receptors. However, the development has been hindered by the difficulty in obtaining olfactory receptors. In this study, we expressed an olfactory receptor, cOR52, using a wheat germ cell-free synthesis system. The functionality of the expressed cOR52 was confirmed by ligand concentration-dependent interactions with the mini-G protein. The expressed cOR52 was immobilized on a graphene field-effect transistor. The cOR52-modified graphene field-effect transistor exhibited a ligand-specific response between 100 nM and 100 µM. This approach seems to be applicable for other olfactory receptors. Therefore, it will be possible to develop an odorant sensor equipped with various olfactory receptors by this method.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary information file.

References

  1. L. Buck, R. Axel, Cell (1991). https://doi.org/10.1016/0092-8674(91)90418-x

    Article  PubMed  Google Scholar 

  2. K.A. Adipietro, J.D. Mainland, H. Matsunami, PLoS Genet (2012). https://doi.org/10.1371/journal.pgen.1002821

    Article  PubMed  PubMed Central  Google Scholar 

  3. P.A. Godfrey, B. Malnic, L.B. Buck, Proc Natl Acad Sci USA (2004). https://doi.org/10.1073/pnas.0308051100

    Article  PubMed  PubMed Central  Google Scholar 

  4. B. Malnic, L.B. Buck, P.A. Godfrey, Proc Natl Acad Sci USA (2004). https://doi.org/10.1073/pnas.0307882100

    Article  PubMed  PubMed Central  Google Scholar 

  5. H. Saito, Q. Chi, H. Zhuang, H. Matsunami, J.D. Mainland, Sci Signal (2009). https://doi.org/10.1126/scisignal.2000016

    Article  PubMed  PubMed Central  Google Scholar 

  6. T. Wasilewski, J. Gębicki, W. Kamysz, Biosens Bioelectron. (2017). https://doi.org/10.1016/j.bios.2016.08.080

    Article  PubMed  Google Scholar 

  7. D. Krautwurst, K.W. Yau, R.R. Reed, Cell (1998). https://doi.org/10.1016/s0092-8674(00)81716-x

    Article  PubMed  Google Scholar 

  8. B.L. Cook, D. Steuerwald, L. Kaiser, J. Graveland-Bikker, M. Vanberghem, A.P. Berke, K. Herlihy, H. Pick, H. Vogel, S. Zhang, Proc Natl Acad Sci USA (2009). https://doi.org/10.1073/pnas.0811089106

    Article  PubMed  PubMed Central  Google Scholar 

  9. S.H. Lee, H.J. Jin, H.S. Song, S. Hong, T.H. Park, J Biotechnol (2012). https://doi.org/10.1016/j.jbiotec.2011.09.011

    Article  PubMed  Google Scholar 

  10. K. Ikegami, C.A. de March, M.H. Nagai, S. Ghosh, M. Do, R. Sharma, E.S. Bruguera, Y.E. Lu, Y. Fukutani, N. Vaidehi, M. Yohda, H. Matsunami, Proc Natl Acad Sci USA (2020). https://doi.org/10.1073/pnas.1915520117

    Article  PubMed  PubMed Central  Google Scholar 

  11. A.K. Geim, K.S. Novoselov, Nat Mater (2007). https://doi.org/10.1038/nmat1849

    Article  PubMed  Google Scholar 

  12. Y. Ohno, K. Maehashi, Y. Yamashiro, K. Matsumoto, Nano Lett (2009). https://doi.org/10.1021/nl901596m

    Article  PubMed  Google Scholar 

  13. Y. Ohno, K. Maehashi, K. Matsumoto, J Am Chem Soc (2010). https://doi.org/10.1021/ja108127r

    Article  PubMed  Google Scholar 

  14. Y. Takagiri, T. Ikuta, K. Maehashi, ACS Omega (2019). https://doi.org/10.1021/acsomega.9b03821

    Article  PubMed  PubMed Central  Google Scholar 

  15. T. Ikuta, T. Tamaki, H. Masai, R. Nakanishi, K. Endo, J. Terao, K. Maehashi, Nanoscale Adv. (2021). https://doi.org/10.1039/d1na00519g

    Article  Google Scholar 

  16. S. Okamoto, Y. Ohno, K. Maehashi, K. Inoue, K. Matsumoto, Jpn J Appl Phys (2012). https://doi.org/10.1143/JJAP.51.06FD08

    Article  Google Scholar 

  17. D.M. Goodwin, F. Walters, M.M. Ali, E.D. Ahmadi, O.J. Guy, Chemosensors (2021). https://doi.org/10.3390/chemosensors9070174

    Article  Google Scholar 

  18. Y. Suzuki, T. Ogasawara, Y. Tanaka, H. Takeda, T. Sawasaki, M. Mogi, S. Liu, K. Maeyama, Front Pharmacol (2018). https://doi.org/10.3389/fphar.2018.00038

    Article  PubMed  PubMed Central  Google Scholar 

  19. R. Nehmé, B. Carpenter, A. Singhal, A. Strege, P.C. Edwards, C.F. White, H. Du, R. Grisshammer, C.G. Tate, PLoS One (2017). https://doi.org/10.1371/journal.pone.0175642

    Article  PubMed  PubMed Central  Google Scholar 

  20. D.T. Jones, R.R. Reed, Science (1989). https://doi.org/10.1126/science.2499043

    Article  PubMed  Google Scholar 

  21. C.A. Schneider, W.S. Rasband, K.W. Eliceiri, Nat Methods (2012). https://doi.org/10.1038/nmeth.2089

    Article  PubMed  PubMed Central  Google Scholar 

  22. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S.K. Banerjee, L. Colombo, R.S. Ruoff, Science (2009). https://doi.org/10.1126/science.1171245

    Article  PubMed  PubMed Central  Google Scholar 

  23. N.M. Zaifuddin, S. Okamoto, T. Ikuta, Y. Ohno, K. Maehashi, M. Miyake, P. Greenwood, K.B.K. Teo, K. Matsumoto, Jpn J Appl Phys (2013). https://doi.org/10.7567/JJAP.52.06GK04

    Article  Google Scholar 

  24. K. Uemura, T. Ikuta, K. Maehashi, Jpn J Appl Phys (2018). https://doi.org/10.7567/JJAP.57.030311

    Article  Google Scholar 

  25. T. Katsura, Y. Yamamoto, K. Maehashi, Y. Ohno, K. Matsumoto, Jpn J Appl Phys (2008). https://doi.org/10.1143/JJAP.47.2060

    Article  Google Scholar 

  26. S. Shahriari, M. Sastry, S. Panjikar, R.K.S. Raman, Nanotechnol Sci Appl (2021). https://doi.org/10.2147/NSA.S334487

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. Daisuke Yoshino of Tokyo University of Agriculture and Technology for the experimental supports of the fluorescence microscopic images. This work was supported by grants from JSPS-KAKENHI (18K14060, 20K15745, 20H02159, 20H02532 and 21H01336) and JST (ACT-X Grant Number JPMJAX201C), Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masafumi Yohda.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2653 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoshii, T., Takayama, I., Fukutani, Y. et al. Development of an odorant sensor with a cell-free synthesized olfactory receptor and a graphene field-effect transistor. ANAL. SCI. 38, 241–245 (2022). https://doi.org/10.1007/s44211-022-00073-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44211-022-00073-y

Keywords

Navigation