Skip to main content
Log in

Development of a cost-effective laser diode-induced fluorescence detection instrument for cyanide detection

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Cyanide is highly toxic to humans and the environment. It is very important to develop an on-site system for the quantitative analysis of cyanide with high sensitivity and reliability. In this study, we developed a cyanide detection system based on the reaction of vaporized cyanide on a glass-fiber filter soaked in a mixture of naphthalene-2,3-dicarboxaldehyde (NDA)-taurine-borate solution. Although the reaction product was stable for at least 3 days at room temperature, the reaction product on the strip was quickly quenched within a few minutes by direct irradiation with 405 nm light. To overcome this problem, we fabricated a simple device designed to detect the fluorescence intensity immediately after inserting a reaction strip into the device. The linearity of the calibration was obtained over a range of 1–100 µM of cyanide with good repeatability. The device is cost-effective (~ $300) and powered by batteries; therefore, it is suitable for the on-site determination of cyanide in crude samples.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. T.I. Mudder, M.M. Botz, Eur. J. Miner. Process. Environ. Prot. 4, 62 (2004)

    Google Scholar 

  2. B.A. Logue, D.M. Hinkens, B.S.I. Baskin, G.A. Rockwood, Crit. Rev. Anal. Chem. 40, 122 (2010). https://doi.org/10.1080/10408340903535315

    Article  CAS  Google Scholar 

  3. F. Moriya, Y. Hashimoto, Forensic Sci. 46, 1421 (2001). https://doi.org/10.1520/JFS15165j

    Article  CAS  Google Scholar 

  4. M.A. Cherian, I. Richmond, J. Clin. Pathol. 53, 794 (2000). https://doi.org/10.1136/jcp.53.10.794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. A.H. Hall, J. Saiers, F. Baud, Crit. Rev. Toxicol. 39, 541 (2009). https://doi.org/10.1080/10408440802304944

    Article  CAS  PubMed  Google Scholar 

  6. Z.M. Dong, H. Ren, J.N. Wang, Y. Wang, Microchem. J. 155, 104676 (2020). https://doi.org/10.1016/j.microc.2020.104676

    Article  CAS  Google Scholar 

  7. G. Sun, W. Chen, Y. Liu, X. Jin, Z. Zhang, J. Su, Dyes Pigm. 176, 108224 (2020). https://doi.org/10.1016/j.dyepig.2020.108224

    Article  CAS  Google Scholar 

  8. A. Mohammadi, F.S. Zabihi, N. Chaibakhsh, J. Photochem. Photobiol. A 367, 384 (2018). https://doi.org/10.1016/j.jphotochem.2018.09.004

    Article  CAS  Google Scholar 

  9. N. Yadav, A.K. Singh, New J. Chem. 42, 6023 (2018). https://doi.org/10.1039/C8NJ00230D

    Article  CAS  Google Scholar 

  10. A. Sheini, M.D. Aseman, M.M. Bordbar, Sci. Rep. 11, 3521 (2021). https://doi.org/10.1038/s41598-021-83186-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. A. Sano, M. Takezawa, S. Takitani, Anal. Chim. Acta 225, 351 (1989). https://doi.org/10.1016/S0003-2670(00)84624-3

    Article  CAS  Google Scholar 

  12. A. Sano, M. Takezawa, S. Takitani, Biomed. Chromatogr. 3, 209 (1989). https://doi.org/10.1002/bmc.1130030507

    Article  CAS  PubMed  Google Scholar 

  13. A. Sano, M. Takimoto, S. Takitani, J. Chromatogr. B 582, 131 (1992). https://doi.org/10.1016/0378-4347(92)80311-D

    Article  CAS  Google Scholar 

  14. S. Chinaka, S. Tanaka, N. Takayama, N. Tsuji, S. Takou, K. Ueda, Anal. Sci. 17, 649 (2001). https://doi.org/10.2116/analsci.17.649

    Article  CAS  PubMed  Google Scholar 

  15. A. Tracqui, J.S. Raul, A. Géraut, L. Berthelon, B. Ludes, J. Anal. Toxicol. 26, 144 (2002). https://doi.org/10.1093/jat/26.3.144

    Article  CAS  PubMed  Google Scholar 

  16. S. Chinaka, N. Takayama, Y. Michigami, K. Ueda, J. Chromatogr. B 713, 353 (1998). https://doi.org/10.1016/S0378-4347(98)00176-5

    Article  CAS  Google Scholar 

  17. Q. Zhang, N. Maddukuri, M. Gong, J. Chromatogr. A 1414, 158 (2015). https://doi.org/10.1016/j.chroma.2015.08.050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Q. Lu, G.E. Collins, T. Evans, M. Hammond, J. Wang, A. Mulchandani, Electrophoresis 25, 116 (2004). https://doi.org/10.1002/elps.200305710

    Article  CAS  PubMed  Google Scholar 

  19. R. Jackson, R.P. Oda, R.K. Bhandari, S.B. Mahon, M. Brenner, G.A. Rockwood, B.A. Longue, Anal. Chem. 59, 1845 (2014). https://doi.org/10.1021/ac403846s

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the MEXT-Supported Program for the Strategic Research Foundation at Private Universities (S1411037, 2014–2018). We thank Kindai University Joint Research Center for use of facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuhiro Morikawa.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 1405 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morikawa, Y., Nishiwaki, K., Suzuki, S. et al. Development of a cost-effective laser diode-induced fluorescence detection instrument for cyanide detection. ANAL. SCI. 38, 437–442 (2022). https://doi.org/10.1007/s44211-022-00065-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44211-022-00065-y

Keywords

Navigation