Skip to main content
Log in

The Prognosis of Simple Solid Solution for Lightweight High-Entropy Alloys Based on the Al–Mg–Li System with Additions

  • Original Paper
  • Published:
High Entropy Alloys & Materials Aims and scope Submit manuscript

Abstract

The high-entropy lightweight alloys including Al, Mg, Li, Zn, Cu, Sn elements have been evaluated using thermodynamic approach in approximation of Miedema model. The compositions of solid solutions and intermetallic compounds with minimal Gibbs free energy were obtained. It is shown that the most stable alloys are non-equiatomic. Potential single-phase multicomponent solid solutions are determined and influence of various factors on its formation is described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. B.S. Murty, J.W. Yeh, S. Ranganathan, P.P. Bhattacharjee, High-Entropy Alloys, 2nd edn. (Elsevier, Oxford, 2019)

    Google Scholar 

  2. Y. Li, Y. Zhang, Light-weight and flexible high-entropy alloys, in Engineering Steels and High Entropy Alloys. ed. by A. Sharma (IntechOpen, Rijeka, 2020), pp.125–139

    Google Scholar 

  3. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun et al., Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater. (2004). https://doi.org/10.1002/adem.200300567

    Article  Google Scholar 

  4. B. Cantor, I. Chang, P. Knight, A. Vincent, Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A (2004). https://doi.org/10.1016/j.msea.2003.10.257

    Article  Google Scholar 

  5. M.C. Gao, C. Zhang, P. Gao, F. Zhang, L.Z. Ouyang, M. Widom, J.A. Hawk, Thermodynamics of concentrated solid solution alloys. Curr. Opin. Solid State Mater. Sci. (2017). https://doi.org/10.1016/j.cossms.2017.08.001

    Article  Google Scholar 

  6. Y. Tan, J. Li, S. Tang, J. Wang, H. Kou, Design of high-entropy alloys with a single solid-solution phase: average properties vs. their variances. J. Alloys Compd. (2018). https://doi.org/10.1016/j.jallcom.2018.01.252

    Article  Google Scholar 

  7. J.-H. Li, M.-H. Tsai, Theories for predicting simple solid solution high-entropy alloys: classification, accuracy, and important factors impacting accuracy. Scr. Mater. (2020). https://doi.org/10.1016/j.scriptamat.2020.06.064

    Article  Google Scholar 

  8. B. Fultz, Vibrational thermodynamics of materials. Prog. Mater. Sci. (2010). https://doi.org/10.1016/j.pmatsci.2009.05.002

    Article  Google Scholar 

  9. A. van de Walle, G. Ceder, The effect of lattice vibrations on substitutional alloy thermodynamics. Rev. Mod. Phys. (2002). https://doi.org/10.1103/RevModPhys.74.11

    Article  Google Scholar 

  10. A. Benisek, E. Dachs, The vibrational and configurational entropy of disordering in Cu3Au. J. Alloys Compd. (2015). https://doi.org/10.1016/j.jallcom.2014.12.215

    Article  PubMed  PubMed Central  Google Scholar 

  11. F. Tian, L.K. Varga, N. Chen, L. Delczeg, L. Vitos, Ab initio investigation of high-entropy alloys of 3d elements. Phys. Rev. B (2013). https://doi.org/10.1103/PhysRevB.87.075144

    Article  Google Scholar 

  12. F. Tian, L. Delczeg, N. Chen, L.K. Varga, J. Shen, L. Vitos, Structural stability of NiCoFeCrAlx high-entropy alloy from ab initio theory. Phys. Rev. B (2013). https://doi.org/10.1103/PhysRevB.88.085128

    Article  Google Scholar 

  13. P. Singh, A.V. Smirnov, D.D. Johnson, Atomic short-range order and incipient long-range order in high-entropy alloys. Phys. Rev. B (2015). https://doi.org/10.1103/PhysRevB.91.224204

    Article  Google Scholar 

  14. D. Ma, B. Grabowski, F. Körmann, J. Neugebauer, D. Raabe, Ab initio thermodynamics of the CoCrFeMnNi high entropy alloy: importance of entropy contributions beyond the configurational one. Acta Mater. (2015). https://doi.org/10.1016/j.actamat.2015.08.050

    Article  Google Scholar 

  15. C. Jiang, B.P. Uberuaga, Efficient Ab initio modeling of random multicomponent alloys. Phys. Rev. Lett. (2016). https://doi.org/10.1103/PhysRevLett.116.105501

    Article  PubMed  Google Scholar 

  16. M.C. Troparevsky, J.R. Morris, P.R.C. Kent, A.R. Lupini, G.M. Stocks, Criteria for predicting the formation of single-phase high-entropy alloys. Phys. Rev. X (2015). https://doi.org/10.1103/PhysRevX.5.011041

    Article  Google Scholar 

  17. F. Zhang, C. Zhang, S.L. Chen, J. Zhu, W.S. Cao, U.R. Kattner, An understanding of high entropy alloys from phase diagram calculations. Calphad (2014). https://doi.org/10.1016/j.calphad.2013.10.006

    Article  Google Scholar 

  18. C. Zhang, F. Zhang, S. Chen, W. Cao, Computational thermodynamics aided high-entropy alloy design. JOM (2012). https://doi.org/10.1007/s11837-012-0365-6

    Article  Google Scholar 

  19. O.N. Senkov, J.D. Miller, D.B. Miracle, C. Woodward, Accelerated exploration of multi-principal element alloys with solid solution phases. Nat. Commun. (2015). https://doi.org/10.1038/ncomms7529

    Article  PubMed  Google Scholar 

  20. Y.F. Ouyang, X.P. Zhong, Y. Du, Y.P. Feng, Y.H. He, Enthalpies of formation for the Al–Cu–Ni–Zr quaternary alloys calculated via a combined approach of geometric model and Miedema theory. J. Alloys Compd. (2006). https://doi.org/10.1016/j.jallcom.2005.10.047

    Article  Google Scholar 

  21. L. Zhang, H. Chen, X. Tao, H. Cai, J. Liu, Y. Ouyang, Q. Peng, Y. Du, Machine learning reveals the importance of the formation enthalpy and atom-size difference in forming phases of high entropy alloys. Mater. Des. (2020). https://doi.org/10.1016/j.matdes.2020.108835

    Article  Google Scholar 

  22. Z. Śniadecki, J.W. Narojczyk, B. Idzikowski, Calculation of glass forming ranges in the ternary Y–Cu–Al system and its sub-binaries based on geometric and Miedema’s models. Intermetallics (2012). https://doi.org/10.1016/j.intermet.2012.03.003

    Article  Google Scholar 

  23. A. Takeuchi, A. Inoue, Mixing enthalpy of liquid phase calculated by Miedema’s scheme and approximated with sub-regular solution model for assessing forming ability of amorphous and glassy alloys. Intermetallics (2010). https://doi.org/10.1016/j.intermet.2010.06.003

    Article  Google Scholar 

  24. L. Zhang, R.C. Wang, X.M. Tao, H. Guo, H.M. Chen, Y.F. Ouyang, Formation enthalpies of Al-Fe-Zr-Nd system calculated by using geometric and Miedema’s models. Physica B (2015). https://doi.org/10.1016/j.physb.2015.01.023

    Article  Google Scholar 

  25. X. Yang, Y. Zhang, Prediction of high-entropy stabilized solid-solution in multi-component alloys. Mater. Chem. Phys. (2012). https://doi.org/10.1016/j.matchemphys.2011.11.021

    Article  Google Scholar 

  26. S. Guo, Q. Hu, C. Ng, C.T. Liu, More than entropy in high-entropy alloys: forming solid solutions or amorphous phase. Intermetallics (2013). https://doi.org/10.1016/j.intermet.2013.05.002

    Article  Google Scholar 

  27. Z. Wang, Y. Huang, Y. Yang, J. Wang, C.T. Liu, Atomic-size effect and solid solubility of multicomponent alloys. Scr. Mater. (2015). https://doi.org/10.1016/j.scriptamat.2014.09.010

    Article  Google Scholar 

  28. A.K. Singh, N. Kumar, A. Dwivedi, A. Subramaniam, A geometrical parameter for the formation of disordered solid solutions in multi-component alloys. Intermetallics (2014). https://doi.org/10.1016/j.intermet.2014.04.019

    Article  Google Scholar 

  29. Y.F. Ye, Q. Wang, J. Lu, C.T. Liu, Y. Yang, Design of high entropy alloys: a single parameter thermodynamic rule. Scr. Mater. (2015). https://doi.org/10.1016/j.scriptamat.2015.03.023

    Article  Google Scholar 

  30. O.N. Senkov, D.B. Miracle, A new thermodynamic parameter to predict formation of solid solution or intermetallic phases in high entropy alloys. J. Alloys Compd. (2016). https://doi.org/10.1016/j.jallcom.2015.10.279

    Article  Google Scholar 

  31. D.J.M. King, S.C. Middleburgh, A.G. McGregor, M.B. Cortie, Predicting the formation and stability of single phase high-entropy alloys. Acta Mater. (2016). https://doi.org/10.1016/j.actamat.2015.11.040

    Article  Google Scholar 

  32. Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, P.K. Liaw, Solid-solution phase formation rules for multicomponent alloys. Adv. Eng. Mater. (2008). https://doi.org/10.1002/adem.200700240

    Article  Google Scholar 

  33. Y. Zhang, Z.P. Lu, S.G. Ma, P.K. Liaw, Z. Tang, Y.Q. Cheng et al., Guidelines in predicting phase formation of high-entropy alloys. MRS Commun. (2014). https://doi.org/10.1557/mrc.2014.11

    Article  Google Scholar 

  34. S. Guo, C. Ng, J. Lu, C.T. Liu, Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. J. Appl. Phys. (2011). https://doi.org/10.1063/1.3587228

    Article  Google Scholar 

  35. S. Fang, X. Xiao, L. Xia, W. Li, Y. Dong, Relationship between the widths of super cooled liquid regions and bond parameters of Mg-based bulk metallic glasses. J. Non-Cryst. Solids (2003). https://doi.org/10.1016/S0022-3093(03)00155-8

    Article  Google Scholar 

  36. A.F. Andreoli, J. Orava, P.K. Liaw, H. Weber, M.F. De Oliveira, K. Nielsch, I. Kaban, The elastic-strain energy criterion for phase formation in complex concentrated alloys. Materialia (2019). https://doi.org/10.1016/j.mtla.2019.100222

    Article  Google Scholar 

  37. X. Yang, S.Y. Chen, J.D. Cotton, Y. Zhang, Phase stability of low-density, multiprincipal component alloys containing aluminum, magnesium, and lithium. JOM (2014). https://doi.org/10.1007/s11837-014-1059-z

    Article  Google Scholar 

  38. F.R. Boer, R. Boom, W. Mattens, A.R. Miedema, A.K. Niessen, Cohesion in Metals: Transition Metal Alloys (North-Holland, Amsterdam, 1988)

    Google Scholar 

  39. H. Bakker, Enthalpies in Alloys: Miedema’s Semi-empirical Model (Trans Tech Publications, Wollerau, 1998)

    Book  Google Scholar 

  40. R.F. Zhang, Miedema calculator (2009), http://www.zrftum.wordpress.com/

  41. A.B. Melnick, V.K. Soolshenko, Thermodynamic design of high-entropy refractory alloys. J. Alloys Compd. (2017). https://doi.org/10.1016/j.jallcom.2016.09.189

    Article  Google Scholar 

  42. A.K. Niessen, A.R. Miedema, The enthalpy effect on forming diluted solid solutions of two 4d and 5d transition metals. Bunsenges Ber. Phys. Chem. (1983). https://doi.org/10.1002/bbpc.19830870903

    Article  Google Scholar 

  43. WebElements periodic table: the periodic table on the web, http://www.webelements.com/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Melnick.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest. The authors declare that the data supporting the findings of this study are available within the paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melnick, A.B., Soolshenko, V.K. & Beloshapka, V.Y. The Prognosis of Simple Solid Solution for Lightweight High-Entropy Alloys Based on the Al–Mg–Li System with Additions. High Entropy Alloys & Materials (2024). https://doi.org/10.1007/s44210-024-00034-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s44210-024-00034-2

Keywords

Navigation