Skip to main content
Log in

High-Entropy Oxide Solar Selective Absorber

  • Original Paper
  • Published:
High Entropy Alloys & Materials Aims and scope Submit manuscript

Abstract

Sputter-deposited high-entropy materials, including high-entropy alloy (HEA) and high-entropy oxide (HEO), are demonstrated for use as selective solar absorber coatings (SSCs). Multi-layer SSC consists of CrFeCoNiAl HEA as the IR reflector layer, (CrFeCoNi)O medium-entropy oxide as the first layer absorber, and (CrMnFeCoNi)O HEO as the second layer absorber. The effects of phase and elemental concentration of the second layer absorber on the optical properties and thermal stability are addressed. The (CrMnFeCoNi)O HEO hematite has better spectral selectivity than the (CrMnFeCoNi)O HEO spinel. Meanwhile, from the X-Ray diffraction and transmission electron microscopy analyses of the annealed samples, the (CrMnFeCoNi)O HEO spinel exhibits better thermal stability than (CrMnFeCoNi)O HEO hematite. This work provides guidance to create an effective solar absorber.

Graphical Abstract

(CrMnFeCoNi)O hematite solar absorber exhibits better spectral selectivity than (CrMnFeCoNi)O spinel. (CrMnFeCoNi)O spinel exhibits better thermal stability than (CrMnFeCoNi)O hematite. The thermal instability of the spinel originates from the metal diffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Data are available on request.

References

  1. M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop, Solar cell efficiency tables (Version 45). Prog. Photovolt. Res. Appl. 23, 1–9 (2015)

    Article  Google Scholar 

  2. D. Abbott, Keeping the energy debate clean: how do we supply the world’s energy needs? Proc. IEEE 98, 42–66 (2009)

    Article  Google Scholar 

  3. N.S. Lewis, G. Crabtree, A.J. Nozik, M.R. Wasielewski, P. Alivisatos, H. Kung, J. Tsao, E. Chandler, W. Walukiewicz, M. Spitler, Basic Research Needs for Solar Energy Utilization. Report of the Basic Energy Sciences Workshop on Solar Energy Utilization, April 18–21, 2005. DOESC (USDOE Office of Science (SC)), (2005)

  4. C.E. Kennedy, Review of mid- to high-temperature solar selective absorber materials. National Renewable Energy Laboratory (2002). https://doi.org/10.2172/15000706

  5. C.K. Ho, A.R. Mahoney, A. Ambrosini, M. Bencomo, A. Hall, T.N. Lambert, Characterization of pyromark 2500 paint for high-temperature solar receivers. J. Sol. Energy Eng. (2013). https://doi.org/10.1115/1.4024031

    Article  Google Scholar 

  6. S. Hosseini, J.F. Torres, M. Taheri, A. Tricoli, W. Lipiński, J. Coventry, Long-term thermal stability and failure mechanisms of Pyromark 2500 for high-temperature solar thermal receivers. Sol. Energy Mater. Sol. Cells 246, 111898 (2022)

    Article  CAS  Google Scholar 

  7. J. Liu, Thermodynamically stable, plasmonic transition metal oxide nanoparticle solar selective absorbers towards 95% optical-to-thermal conversion efficiency at 750 °C. National Renewable Energy Laboratory (2021). https://doi.org/10.2172/1890656

  8. X. Wang, E. Lee, C. Xu, J. Liu, High-efficiency, air-stable manganese–iron oxide nanoparticle-pigmented solar selective absorber coatings toward concentrating solar power systems operating at 750 °C. Mater. Today Energy 19, 100609 (2021)

    Article  CAS  Google Scholar 

  9. Y. Yin, Y. Pan, L. Hang, D. McKenzie, M. Bilek, Direct current reactive sputtering Cr–Cr2O3 cermet solar selective surfaces for solar hot water applications. Thin Solid Films 517, 1601–1606 (2009)

    Article  ADS  CAS  Google Scholar 

  10. H. Liu, Q. Wan, B. Lin, L. Wang, X. Yang, R. Wang, D. Gong, Y. Wang, F. Ren, Y. Chen, The spectral properties and thermal stability of CrAlO-based solar selective absorbing nanocomposite coating. Sol. Energy Mater. Sol. Cells 122, 226–232 (2014)

    Article  CAS  Google Scholar 

  11. H. Liu, B. Yang, M. Mao, Y. Liu, Y. Chen, Y. Cai, D. Fu, F. Ren, Q. Wan, X. Hu, Enhanced thermal stability of solar selective absorber based on nano-multilayered TiAlON films deposited by cathodic arc evaporation. Appl. Surf. Sci. 501, 144025 (2020)

    Article  CAS  Google Scholar 

  12. N. Selvakumar, H.C. Barshilia, K. Rajam, A. Biswas, Structure, optical properties and thermal stability of pulsed sputter deposited high temperature HfOx/Mo/HfO2 solar selective absorbers. Sol. Energy Mater. Sol. Cells 94, 1412–1420 (2010)

    Article  CAS  Google Scholar 

  13. M.-H. Tsai, J.-W. Yeh, High-entropy alloys: a critical review. Mater. Res. Lett. 2, 107–123 (2014)

    Article  Google Scholar 

  14. C.M. Rost, E. Sachet, T. Borman, A. Moballegh, E.C. Dickey, D. Hou, J.L. Jones, S. Curtarolo, J.-P. Maria, Entropy-stabilized oxides. Nat. Commun. 6, 8485 (2015)

    Article  ADS  CAS  PubMed  Google Scholar 

  15. A. Mao, F. Quan, H.-Z. Xiang, Z.-G. Zhang, K. Kuramoto, A.-L. Xia, Facile synthesis and ferrimagnetic property of spinel (CoCrFeMnNi) 3O4 high-entropy oxide nanocrystalline powder. J. Mol. Struct. 1194, 11–18 (2019)

    Article  ADS  CAS  Google Scholar 

  16. Y. Dong, K. Ren, Y. Lu, Q. Wang, J. Liu, Y. Wang, High-entropy environmental barrier coating for the ceramic matrix composites. J. Eur. Ceram. Soc. 39, 2574–2579 (2019)

    Article  CAS  Google Scholar 

  17. D. Bérardan, S. Franger, D. Dragoe, A.K. Meena, N. Dragoe, Colossal dielectric constant in high entropy oxides. Phys. Status Solidi RRL 10, 328–333 (2016)

    Article  Google Scholar 

  18. A. Radoń, Ł Hawełek, D. Łukowiec, J. Kubacki, P. Włodarczyk, Dielectric and electromagnetic interference shielding properties of high entropy (Zn, Fe, Ni, Mg, Cd) Fe 2 O 4 ferrite. Sci. Rep. 9, 1–13 (2019)

    Article  Google Scholar 

  19. J. Dąbrowa, M. Stygar, A. Mikuła, A. Knapik, K. Mroczka, W. Tejchman, M. Danielewski, M. Martin, Synthesis and microstructure of the (Co, Cr, Fe, Mn, Ni) 3O4 high entropy oxide characterized by spinel structure. Mater. Lett. 216, 32–36 (2018)

    Article  Google Scholar 

  20. M. Biesuz, L. Spiridigliozzi, G. Dell’Agli, M. Bortolotti, V.M. Sglavo, Synthesis and sintering of (Mg Co, Ni, Cu, Zn) O entropy-stabilized oxides obtained by wet chemical methods. J. Mater. Sci. 53, 8074–8085 (2018)

    Article  ADS  CAS  Google Scholar 

  21. L. Spiridigliozzi, C. Ferone, R. Cioffi, G. Accardo, D. Frattini, G. Dell’Agli, Entropy-stabilized oxides owning fluorite structure obtained by hydrothermal treatment. Materials 13, 558 (2020)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. D. Wang, Z. Liu, S. Du, Y. Zhang, H. Li, Z. Xiao, W. Chen, R. Chen, Y. Wang, Y. Zou, Low-temperature synthesis of small-sized high-entropy oxides for water oxidation. J. Mater. Chem. A 7, 24211–24216 (2019)

    Article  CAS  Google Scholar 

  23. A. Sarkar, L. Velasco, D. Wang, Q. Wang, G. Talasila, L. de Biasi, C. Kübel, T. Brezesinski, S.S. Bhattacharya, H. Hahn, High entropy oxides for reversible energy storage. Nat. Commun. 9, 1–9 (2018)

    Article  Google Scholar 

  24. A. Sarkar, R. Djenadic, N.J. Usharani, K.P. Sanghvi, V.S. Chakravadhanula, A.S. Gandhi, H. Hahn, S.S. Bhattacharya, Nanocrystalline multicomponent entropy stabilised transition metal oxides. J. Eur. Ceram. Soc. 37, 747–754 (2017)

    Article  CAS  Google Scholar 

  25. P. Meisenheimer, T. Kratofil, J. Heron, Giant enhancement of exchange coupling in entropy-stabilized oxide heterostructures. Sci. Rep. 7, 1–6 (2017)

    Article  CAS  Google Scholar 

  26. C.-Y. He, X.-H. Gao, D.-M. Yu, X.-L. Qiu, H.-X. Guo, G. Liu, Scalable and highly efficient high temperature solar absorber coatings based on high entropy alloy nitride AlCrTaTiZrN with different antireflection layers. J. Mater. Chem. A 9, 6413–6422 (2021)

    Article  CAS  Google Scholar 

  27. C.-Y. He, X.-H. Gao, M. Dong, X.-L. Qiu, J.-H. An, H.-X. Guo, G. Liu, Further investigation of a novel high entropy alloy MoNbHfZrTi based solar absorber coating with double antireflective layers. Solar Energy Mater. Solar Cells 217, 110709 (2020)

    Article  CAS  Google Scholar 

  28. C.-Y. He, X.-H. Gao, D.-M. Yu, S.-S. Zhao, H.-X. Guo, G. Liu, Toward high-temperature thermal tolerance in solar selective absorber coatings: choosing high entropy ceramic HfNbTaTiZrN. J. Mater. Chem. A 9, 21270–21280 (2021)

    Article  CAS  Google Scholar 

  29. H.-X. Guo, C.-Y. He, X.-L. Qiu, Y.-Q. Shen, G. Liu, X.-H. Gao, A novel multilayer high temperature colored solar absorber coating based on high-entropy alloy MoNbHfZrTi: optimized preparation and chromaticity investigation. Solar Energy Mater. Solar Cells 209, 110444 (2020)

    Article  CAS  Google Scholar 

  30. S.-S. Zhao, C.-Y. He, X.-L. Qiu, P. Zhao, B.-H. Liu, G. Liu, X.-H. Gao, G.-K. Tian, High-entropy alloy nitride AlMo0.5NbTa0.5TiZrNx-based high-temperature solar absorber coating: structure, optical properties, and thermal stability. ACS Appl. Energy Mater. 5, 9214–9224 (2022)

    Article  CAS  Google Scholar 

  31. M. López-Herraiz, A.B. Fernández, N. Martinez, M. Gallas, Effect of the optical properties of the coating of a concentrated solar power central receiver on its thermal efficiency. Sol. Energy Mater. Sol. Cells 159, 66–72 (2017)

    Article  Google Scholar 

  32. X.-H. Gao, X.-L. Qiu, X.-T. Li, W. Theiss, B.-H. Chen, H.-X. Guo, T.-H. Zhou, G. Liu, Structure, thermal stability and optical simulation of ZrB2 based spectrally selective solar absorber coatings. Sol. Energy Mater. Sol. Cells 193, 178–183 (2019)

    Article  CAS  Google Scholar 

  33. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299–303 (2004)

    Article  CAS  Google Scholar 

  34. K. Srinivas, M. Manivel Raja, D.V. Sridhara Rao, S.V. Kamat, Effect of sputtering pressure and power on composition, surface roughness, microstructure and magnetic properties of as-deposited Co2FeSi thin films. Thin Solid Films 558, 349–355 (2014)

    Article  ADS  CAS  Google Scholar 

  35. Y. He, L. Zhang, H.W. Xiong, K.C. Zhou, X. Kang, The selective site occupation, structural and thermal stability of high entropy (CoCrFeMnNi)3O4 spinel. J. Alloys Comp. 965, 171428 (2023)

    Article  CAS  Google Scholar 

  36. Z. Grzesik, G. Smoła, M. Miszczak, M. Stygar, J. Dąbrowa, M. Zajusz, K. Świerczek, M. Danielewski, Defect structure and transport properties of (Co, Cr, Fe, Mn, Ni)3O4 spinel-structured high entropy oxide. J. Eur. Ceram. Soc. 40, 835–839 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science and Technology Council under Grant Number NSTC 112-2224-E-006-003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyh-Ming Ting.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 784 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, YC., Sari, F.N.I., Li, SY. et al. High-Entropy Oxide Solar Selective Absorber. High Entropy Alloys & Materials (2024). https://doi.org/10.1007/s44210-024-00028-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s44210-024-00028-0

Keywords

Navigation