Skip to main content
Log in

Atomistic Simulations of Ductile Failure in a b.c.c. High-Entropy Alloy

  • Original Paper
  • Published:
High Entropy Alloys & Materials Aims and scope Submit manuscript

Abstract

Ductile failure is studied in a bcc HfNbTaZr High-Entropy Alloy (HEA) with a pre-existing void. Using molecular dynamics simulations of uniaxial tensile tests, we explore the effect of void radius on the elastic modulus and yield stress. The elastic modulus scales with porosity as in closed-cell foams. The critical stress for dislocation nucleation as a function of the void radius is very well described by a model designed after pure bcc metals, taking into account a larger core radius for the HEA. Twinning takes place as a complementary deformation mechanism, and some detwinning occurs at large strain. No solid–solid phase transitions are identified. The concurrent effects of element size mismatch and plasticity lead to significant lattice disorder. By comparing our HEA results to pure tantalum simulations, we show that the critical stress for dislocation nucleation and the resulting dislocation densities are much lower than for pure Ta, as expected from lower energy barriers due to chemical complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. B. Cantor, I. Chang, P. Knight, A. Vincent, Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 375, 213–218 (2004). https://doi.org/10.1016/j.msea.2003.10.257

    Article  CAS  Google Scholar 

  2. J.-W. Yeh, S.-K. Chen, S.-J. Lin, J.-Y. Gan, T.-S. Chin, T.-T. Shun, C.-H. Tsau, S.-Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299–303 (2004). https://doi.org/10.1002/adem.200300567

    Article  CAS  Google Scholar 

  3. Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 61, 1–93 (2014). https://doi.org/10.1016/j.actamat.2016.08.081

    Article  CAS  Google Scholar 

  4. B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, A fracture-resistant high-entropy alloy for cryogenic applications. Science 345, 1153–1158 (2014). https://doi.org/10.1126/science.1254581

    Article  CAS  Google Scholar 

  5. Z. Li, S. Zhao, R.O. Ritchie, M.A. Meyers, Mechanical properties of high-entropy alloys with emphasis on face-centered cubic alloys. Prog. Mater Sci. 102, 296–345 (2019). https://doi.org/10.1016/j.pmatsci.2018.12.003

    Article  CAS  Google Scholar 

  6. D.B. Miracle, O.N. Senkov, A critical review of high entropy alloys and related concepts. Acta Mater. 122, 448–511 (2017). https://doi.org/10.1016/j.actamat.2016.08.081

    Article  CAS  Google Scholar 

  7. O.N. Senkov, G. Wilks, J. Scott, D.B. Miracle, Mechanical properties of nb25mo25ta25w25 and v20nb20mo20ta20w20 refractory high entropy alloys. Intermetallics 19, 698–706 (2011). https://doi.org/10.1016/j.intermet.2011.01.004

    Article  CAS  Google Scholar 

  8. M. Kawamura, M. Asakura, N.L. Okamoto, K. Kishida, H. Inui, E.P. George, Plastic deformation of single crystals of the equiatomic cr- mn- fe- co- ni high-entropy alloy in tension and compression from 10 k to 1273 k. Acta Mater. 203, 116454 (2021). https://doi.org/10.1016/j.actamat.2020.10.073

    Article  CAS  Google Scholar 

  9. J.-W. Yeh, Physical metallurgy of high-entropy alloys. Jom 67, 2254–2261 (2015). https://doi.org/10.1007/s11837-015-1583-5

    Article  CAS  Google Scholar 

  10. E.J. Pickering, A.W. Carruthers, P.J. Barron, S.C. Middleburgh, D.E. Armstrong, A.S. Gandy, High-entropy alloys for advanced nuclear applications. Entropy 23, 98 (2021). https://doi.org/10.3390/e23010098

    Article  CAS  Google Scholar 

  11. O. Deluigi, R. Pasianot, F. Valencia, A. Caro, D. Farkas, E. Bringa, Simulations of primary damage in a high entropy alloy: probing enhanced radiation resistance. Acta Mater. 213, 116951 (2021). https://doi.org/10.1016/j.actamat.2021.116951

    Article  CAS  Google Scholar 

  12. S. Zhao, Y. Xiong, S. Ma, J. Zhang, B. Xu, J.-J. Kai, Defect accumulation and evolution in refractory multi-principal element alloys. Acta Mater. 219, 117233 (2021). https://doi.org/10.1016/j.actamat.2021.117233

    Article  CAS  Google Scholar 

  13. H. Son, S. Nam, H. Choi, Development of porous high-entropy alloys by mechanical alloying and chemical de-alloying. Powder Metall. 64, 211–218 (2021). https://doi.org/10.1080/00325899.2021.1901399

    Article  CAS  Google Scholar 

  14. M.C. Gao, D.B. Miracle, D. Maurice, X. Yan, Y. Zhang, J.A. Hawk, High-entropy functional materials. J. Mater. Res. 33, 3138–3155 (2018). https://doi.org/10.1557/jmr.2018.323

    Article  CAS  Google Scholar 

  15. E.P. George, D. Raabe, R.O. Ritchie, High-entropy alloys. Nat. Rev. Mater. 4, 515–534 (2019). https://doi.org/10.1038/s41578-019-0121-4

    Article  CAS  Google Scholar 

  16. W. Steurer, Single-phase high-entropy alloys–a critical update. Mater. Charact. 162, 110179 (2020). https://doi.org/10.1016/j.matchar.2020.110179

    Article  CAS  Google Scholar 

  17. B. Gao, Q. Xiang, T. Guo, X. Guo, S. Tang, X.X. Huang, In situ tem investigation on void coalescence in metallic materials. Mater. Sci. Eng. A 734, 260–268 (2018). https://doi.org/10.1016/j.msea.2018.07.064

    Article  CAS  Google Scholar 

  18. O.N. Senkov, D.B. Miracle, K.J. Chaput, J.-P. Couzinie, Development and exploration of refractory high entropy alloys—a review. J. Mater. Res. 33, 3092–3128 (2018). https://doi.org/10.1557/jmr.2018.153

    Article  CAS  Google Scholar 

  19. E.P. George, W. Curtin, C.C. Tasan, High entropy alloys: a focused review of mechanical properties and deformation mechanisms. Acta Mater. 188, 435–474 (2020). https://doi.org/10.1016/j.actamat.2019.12.015

    Article  CAS  Google Scholar 

  20. S. Mishra, S. Maiti, B.S. Dwadasi, B. Rai, Realistic microstructure evolution of complex Ta-Nb-Hf-Zr high-entropy alloys by simulation techniques. Sci. Rep. 9, 1–11 (2019). https://doi.org/10.1038/s41598-019-52170-0

    Article  CAS  Google Scholar 

  21. C. Lee, F. Maresca, R. Feng, Y. Chou, T. Ungar, M. Widom, K. An, J.D. Poplawsky, Y.-C. Chou, P.K. Liaw et al., Strength can be controlled by edge dislocations in refractory high-entropy alloys. Nat. Commun. 12, 1–8 (2021). https://doi.org/10.1038/s41467-021-25807-w

    Article  CAS  Google Scholar 

  22. S. Peng, K. Jin, X. Yi, Z. Dong, X. Guo, Y. Liu, Y. Cheng, N. Jia, H. Duan, J. Xue, Mechanical behavior of the HfNbZrTi high entropy alloy after ion irradiation based on micropillar compression tests. J. Alloy Compd. 892, 162043 (2022). https://doi.org/10.1016/j.jallcom.2021.162043

    Article  CAS  Google Scholar 

  23. Y. Bu, Y. Wu, Z. Lei, X. Yuan, H. Wu, X. Feng, J. Liu, J. Ding, Y. Lu, H. Wang, Z. Lu, W. Yang, Local chemical fluctuation mediated ductility in body-centered-cubic high-entropy alloys. Mater. Today 46, 28–34 (2021). https://doi.org/10.1016/j.mattod.2021.02.022

    Article  CAS  Google Scholar 

  24. F. Liu, P.K. Liaw, Y. Zhang, Recent progress with bcc-structured high-entropy alloys. Metals 12, 501 (2022). https://doi.org/10.3390/met12030501

    Article  CAS  Google Scholar 

  25. M. Widom, Modeling the structure and thermodynamics of high-entropy alloys. J. Mater. Res. 33(19), 2881–2898 (2018). https://doi.org/10.1557/jmr.2018.222

    Article  CAS  Google Scholar 

  26. Z.H. Aitken, V. Sorkin, Y.-W. Zhang, Atomistic modeling of nanoscale plasticity in highentropy alloys. J. Mater. Res. 34, 1509–1532 (2019). https://doi.org/10.1557/jmr.2019.50

    Article  CAS  Google Scholar 

  27. J. Li, Q. Fang, P.K. Liaw, Microstructures and properties of high-entropy materials: modeling, simulation, and experiments. Adv. Eng. Mater. 23, 2001044 (2021). https://doi.org/10.1002/adem.202001044

    Article  CAS  Google Scholar 

  28. D. Farkas, Grain boundary structure in high-entropy alloys. J. Mater. Sci. 55, 9173–9183 (2020). https://doi.org/10.1007/s10853-020-04387-y

    Article  CAS  Google Scholar 

  29. D. Farkas, A. Caro, Model interatomic potentials and lattice strain in a high-entropy alloy. J. Mater. Res. 33, 3218–3225 (2018). https://doi.org/10.1557/jmr.2018.245

    Article  CAS  Google Scholar 

  30. R. Pasianot, D. Farkas, Atomistic modeling of dislocations in a random quinary high entropy alloy. Comput. Mater. Sci. 173, 109366 (2020). https://doi.org/10.1016/j.commatsci.2019.109366

    Article  CAS  Google Scholar 

  31. C.J. Ruestes, D. Farkas, Deformation response of high entropy alloy nanowires. J. Mater. Sci. 56, 16447–16462 (2021). https://doi.org/10.1016/j.commatsci.2022.111218

    Article  CAS  Google Scholar 

  32. D. Farkas, Deformation behavior of a model high entropy alloy from atomistic simulations. Mater. Sci. Eng. A 812, 141124 (2021). https://doi.org/10.1016/j.msea.2021.141124

    Article  CAS  Google Scholar 

  33. C.J. Ruestes, D. Farkas, Dislocation emission and propagation under a nano-indenter in a model high entropy alloy. Comput. Mater. Sci. 205, 111218 (2022). https://doi.org/10.1016/j.commatsci.2022.111218

    Article  CAS  Google Scholar 

  34. Y. Cui, Z. Chen, Y. Ju, Fracture of void-embedded high-entropy-alloy films: a comprehensive atomistic study. Materialia 12, 100790 (2020). https://doi.org/10.1016/j.mtla.2020.100790

    Article  CAS  Google Scholar 

  35. Y. Cui, Y. Toku, Y. Kimura, Y. Ju, High-strain-rate void growth in high entropy alloys: suppressed dislocation emission = suppressed void growth. Scripta Mater. 185, 12–18 (2020). https://doi.org/10.1016/j.scriptamat.2020.03.056

    Article  CAS  Google Scholar 

  36. Y. Cui, Z. Chen, S. Gu, W. Yang, Y. Ju, Investigating size dependence in nanovoid embedded high-entropy-alloy films under biaxial tension. Arch. Appl. Mech. (2022). https://doi.org/10.1007/s00419-021-02100-2

    Article  Google Scholar 

  37. S.K. Singh, A. Parashar, Atomistic simulations to study crack tip behaviour in multielemental alloys. Eng. Fract. Mech. 243, 107536 (2021). https://doi.org/10.1016/j.engfracmech.2021.107536

    Article  Google Scholar 

  38. Z. Zhang, M.M. Mao, J. Wang, B. Gludovatz, Z. Zhang, S.X. Mao, E.P. George, Q. Yu, R.O. Ritchie, Nanoscale origins of the damage tolerance of the high-entropy alloy CrMnFeCoNi. Nat. Commun. 6, 1–6 (2015). https://doi.org/10.1038/ncomms10143

    Article  Google Scholar 

  39. X. Huang, L. Liu, X. Duan, W. Liao, J. Huang, H. Sun, C. Yu, Atomistic simulation of chemical short-range order in hfnbtazr high entropy alloy based on a newly-developed interatomic potential. Mater. Des. 202, 109560 (2021). https://doi.org/10.1016/j.matdes.2021.109560

    Article  CAS  Google Scholar 

  40. S. Plimpton, Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995). https://doi.org/10.1006/jcph.1995.1039

    Article  CAS  Google Scholar 

  41. M.S. Daw, M.I. Baskes, Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals. Phys. Rev. B 29, 6443 (1984). https://doi.org/10.1103/PhysRevB.29.6443

    Article  CAS  Google Scholar 

  42. S. Maiti, W. Steurer, Structural-disorder and its effect on mechanical properties in single-phase TaNbHfZr high-entropy alloy. Acta Mater. 106, 87–97 (2016). https://doi.org/10.1016/j.actamat.2016.01.018

    Article  CAS  Google Scholar 

  43. D. Thurmer, S. Zhao, O.R. Deluigi, C. Stan, I.A. Alhafez, H.M. Urbassek, M.A. Meyers, E.M. Bringa, N. Gunkelmann, Exceptionally high spallation strength for a high-entropy alloy demonstrated by experiments and simulations. J. Alloy Compd. 895, 162567 (2022). https://doi.org/10.1016/j.jallcom.2021.162567

    Article  CAS  Google Scholar 

  44. Y. Tang, E.M. Bringa, M.A. Meyers, Ductile tensile failure in metals through initiation and growth of nanosized voids. Acta Mater. 60, 4856–4865 (2012). https://doi.org/10.1016/j.actamat.2012.05.030

    Article  CAS  Google Scholar 

  45. A. Stukowski, Visualization and analysis of atomistic simulation data with ovito–the open visualization tool. Modell. Simul. Mater. Sci. Eng. 18, 015012 (2009). https://doi.org/10.1088/0965-0393/18/1/015012

    Article  Google Scholar 

  46. P.M. Larsen, S. Schmidt, J. Schiøtz, Robust structural identification via polyhedral template matching. Modell. Simul. Mater. Sci. Eng. 24, 055007 (2016). https://doi.org/10.1088/0965-0393/24/5/055007

    Article  CAS  Google Scholar 

  47. A. Stukowski, K. Albe, Dislocation detection algorithm for atomistic simulations. Modell. Simul. Mater. Sci. Eng. 18, 025016 (2010). https://doi.org/10.1088/0965-0393/18/2/025016

    Article  CAS  Google Scholar 

  48. A. Stukowski, Computational analysis methods in atomistic modeling of crystals. Jom 66, 399–407 (2014). https://doi.org/10.1007/s11837-013-0827-5

    Article  CAS  Google Scholar 

  49. F. Shimizu, S. Ogata, J. Li, Theory of shear banding in metallic glasses and molecular dynamics calculations. Mater. Trans. 48, 2923–2927 (2007). https://doi.org/10.2320/matertrans.MJ200769

    Article  CAS  Google Scholar 

  50. J.A. Martinez, D.E. Yilmaz, T. Liang, S.B. Sinnott, S.R. Phillpot, Fitting empirical potentials: challenges and methodologies. Curr. Opin. Solid State Mater. Sci. 17, 263–270 (2013). https://doi.org/10.1016/j.cossms.2013.09.001

    Article  CAS  Google Scholar 

  51. S. Mishra, S. Maiti, B. Rai, Computational property predictions of Ta–Nb–Hf–Zr highentropy alloys. Sci. Rep. 11, 1–12 (2021). https://doi.org/10.1038/s41598-021-84260-3

    Article  CAS  Google Scholar 

  52. F. Mouhat, F.-X. Coudert, Necessary and sufficient elastic stability conditions in various crystal systems. Phys. Rev. B 90, 224104 (2014). https://doi.org/10.1103/PhysRevB.90.224104

    Article  CAS  Google Scholar 

  53. M.A. Meyers, K.K. Chawla, Mechanical Behavior of Materials (Cambridge University Press, Cambridge, 2008)

    Book  Google Scholar 

  54. G. Ziegenhain, H.M. Urbassek, A. Hartmaier, Influence of crystal anisotropy on elastic deformation and onset of plasticity in nanoindentation: a simulational study. J. Appl. Phys. 107, 061807 (2010). https://doi.org/10.1063/1.3340523

    Article  CAS  Google Scholar 

  55. A. Reuss, Berücksichtigung der elastischen formänderung in der plastizitätstheorie. J. Appl. Math. Mech. 10, 266–274 (1930). https://doi.org/10.1002/zamm.19300100308

    Article  Google Scholar 

  56. W. Voigt, Lehrbuch der kristallphysik:(mit ausschluss der kristalloptik), vol. 34, BG Teubner, 1910.

  57. C.J. Ruestes, A. Stukowski, Y. Tang, D. Tramontina, P. Erhart, B. Remington, H. Urbassek, M.A. Meyers, E.M. Bringa, Atomistic simulation of tantalum nanoindentation: effects of indenter diameter, penetration velocity, and interatomic potentials on defect mechanisms and evolution. Mater. Sci. Eng. A 613, 390–403 (2014). https://doi.org/10.1016/j.msea.2014.07.001

    Article  CAS  Google Scholar 

  58. H. Sheng, M. Kramer, A. Cadien, T. Fujita, M. Chen, Highly optimized embedded-atommethod potentials for fourteen fcc metals. Phys. Rev. B 83, 134118 (2011). https://doi.org/10.1103/PhysRevB.83.134118

    Article  CAS  Google Scholar 

  59. S. Rao, C. Varvenne, C. Woodward, T. Parthasarathy, D. Miracle, O. Senkov, W. Curtin, Atomistic simulations of dislocations in a model bcc multicomponent concentrated solid solution alloy. Acta Mater. 125, 311–320 (2017). https://doi.org/10.1016/j.actamat.2016.12.011

    Article  CAS  Google Scholar 

  60. Q. He, Y. Yang, On lattice distortion in high entropy alloys. Front. Mater. 5, 42 (2018). https://doi.org/10.3389/fmats.2018.00042

    Article  Google Scholar 

  61. O. Senkov, D. Miracle, Effect of the atomic size distribution on glass forming ability of amorphous metallic alloys. Mater. Res. Bull. 36, 2183–2198 (2001). https://doi.org/10.1016/S0025-5408(01)00715-2

    Article  CAS  Google Scholar 

  62. H. Song, F. Tian, Q.-M. Hu, L. Vitos, Y. Wang, J. Shen, N. Chen, Local lattice distortion in high-entropy alloys. Phys. Rev. Mater. 1, 023404 (2017). https://doi.org/10.1103/PhysRevMaterials.1.023404

    Article  Google Scholar 

  63. Y. Tang, E.M. Bringa, B.A. Remington, M.A. Meyers, Growth and collapse of nanovoids in tantalum monocrystals. Acta Mater. 59, 1354–1372 (2011). https://doi.org/10.1016/j.actamat.2010.11.001

    Article  CAS  Google Scholar 

  64. M. Ashby, A. Evans, N. Fleck, L. Gibson, J. Hutchinson, H. Wadley, F. Delale, Metal foams: a design guide. Appl. Mech. Rev. 54(6), B105–B106 (2000)

    Article  Google Scholar 

  65. Y.-J. Hu, A. Sundara, S. Ogata, L. Qi, Screening of generalized stacking fault energies, surface energies and intrinsic ductile potency of refractory multicomponent alloys. Acta Mater. 210, 116800 (2021). https://doi.org/10.1016/j.actamat.2021.116800

    Article  CAS  Google Scholar 

  66. D. Tramontina, C. Ruestes, Y. Tang, E. Bringa, Orientation-dependent response of defective tantalum single crystals. Comput. Mater. Sci. 90, 82–88 (2014). https://doi.org/10.1016/j.commatsci.2014.03.069

    Article  CAS  Google Scholar 

  67. T. Tang, S. Kim, M. Horstemeyer, Molecular dynamics simulations of void growth and coalescence in single crystal magnesium. Acta Mater. 58, 4742–4759 (2010). https://doi.org/10.1016/j.actamat.2010.05.011

    Article  CAS  Google Scholar 

  68. V.A. Lubarda, M. Schneidera, D. Kalantar, B. Remington, M. Meyers, Void growth by dislocation emission. Acta Mater. 52, 1397 (2004). https://doi.org/10.1016/j.actamat.2003.11.022

    Article  CAS  Google Scholar 

  69. L. Zhao, H. Zong, X. Ding, T. Lookman, Anomalous dislocation core structure in shock compressed bcc high-entropy alloys. Acta Mater. 209, 116801 (2021). https://doi.org/10.1016/j.actamat.2021.116801

    Article  CAS  Google Scholar 

  70. Y. Xiao, R. Kozak, M. Hache, S. Walter, R. Spolenak, J. Wheeler, Y. Zou, Microcompression studies of face-centered cubic and body-centered cubic high-entropy alloys: size-dependent strength, strain rate sensitivity, and activation volumes. Mater. Sci. Eng. A 90, 139429 (2020). https://doi.org/10.1016/j.msea.2020.139429

    Article  CAS  Google Scholar 

  71. S.-H. Joo, J. Bae, W.-Y. Park, Y. Shimada, T. Wada, H. Kim, A. Takeuchi, T. Konno, H. Kato, I. Okulov, Beating thermal coarsening in nanoporous materials via high-entropy design. Adv. Mater. 32, 1906160 (2020). https://doi.org/10.1002/adma.201906160

    Article  CAS  Google Scholar 

  72. H. Van Swygenhoven, P.M. Derlet, A.G. Frøseth, Stacking fault energies and slip in nanocrystalline metals. Nat. Mater. 3, 399–403 (2004). https://doi.org/10.1038/nmat1136

    Article  CAS  Google Scholar 

  73. M. Beyramali Kivy, M. Asle Zaeem, Generalized stacking fault energies, ductilities, and twinnabilities of CoCrFeNi-based face-centered cubic high entropy alloys. Scripta Mater. 139, 83–86 (2017). https://doi.org/10.1016/j.scriptamat.2017.06.014

    Article  CAS  Google Scholar 

  74. N. Zhang, K. Gan, Z. Li, Atomistic insights on the deformation mechanisms of Cox(CrNi)100–x multicomponent alloys: the effect of Co content. Comput. Mater. Sci. 211, 111559 (2022). https://doi.org/10.1016/j.commatsci.2022.111559

    Article  CAS  Google Scholar 

  75. S. Qiu, X.C. Zhang, J. Zhou, S. Cao, H. Yu, Q.M. Hu, Z. Sun, Influence of lattice distortion on stacking fault energies of CoCrFeNi and Al-CoCrFeNi high entropy alloys. J. Alloy Compd. 846, 156321 (2020). https://doi.org/10.1016/j.jallcom.2020.156321

    Article  CAS  Google Scholar 

  76. C.J. Ruestes, E.M. Bringa, A. Stukowski, J.R. Nieva, Y. Tang, M. Meyers, Plastic deformation of a porous bcc metal containing nanometer sized voids. Comput. Mater. Sci. 88, 92–102 (2014). https://doi.org/10.1016/j.commatsci.2014.02.047

    Article  CAS  Google Scholar 

  77. Q. Doan, T.H. Fang, T.H. Chen, T.X. Bui, Effects of void and inclusion sizes on mechanical response and failure mechanism of AlCrCuFeNi2 high-entropy alloy. Eng. Fract. Mech. 252, 107848 (2021). https://doi.org/10.1016/j.engfracmech.2021.107848

    Article  Google Scholar 

  78. F. Maresca, W.A. Curtin, Theory of screw dislocation strengthening in random bcc alloys from dilute to “high-entropy” alloys. Acta Mater. 182, 144–162 (2020). https://doi.org/10.1016/j.actamat.2019.10.007

    Article  CAS  Google Scholar 

  79. S. Rao, C. Woodward, B. Akdim, O. Senkov, D. Miracle, Theory of solid solution strengthening of bcc chemically complex alloys. Acta Mater. 209, 116758 (2021). https://doi.org/10.1016/j.actamat.2021.116758

    Article  CAS  Google Scholar 

  80. W.A. Maresca, Curtin, Mechanistic origin of high strength in refractory bcc high entropy alloys up to 1900k. Acta Mater. 182, 235–249 (2020). https://doi.org/10.1016/j.actamat.2019.10.015

    Article  CAS  Google Scholar 

  81. T. Shi, Z. Su, J. Li, C. Liu, J. Yang, X. He, D. Yun, Q. Peng, C. Lu, Distinct point defect behaviours in body-centered cubic medium-entropy alloy nbzrti induced by severe lattice distortion. Acta Mater. 229, 117806 (2022). https://doi.org/10.1016/j.actamat.2022.117806

    Article  CAS  Google Scholar 

  82. C. Wehrenberg, D. McGonegle, C. Bolme, A. Higginbotham, A. Lazicki, F. Tavella, L. Zepeda-Ruiz, J. Wark, Femtosecond measurement of shock wave driven twinning and lattice dynamics. Nature (2017). https://doi.org/10.1038/nature24061

    Article  Google Scholar 

  83. G. Wei, H. Xie, F. Yin, G. Lu, Twinning mechanism asymmetry in body-centered cubic tantalum under [001] uniaxial compression/tension. Phys. Rev. Mater. 5, 123604 (2021). https://doi.org/10.1103/PhysRevMaterials.5.123604

    Article  CAS  Google Scholar 

  84. X. Liu, D. Hua, W. Wang, Q. Zhou, S. Li, J. Shi, H. Wang, Atomistic understanding of incipient plasticity in BCC refractory high entropy alloys. J. Alloys Compds. 920, 166058 (2022). https://doi.org/10.1016/j.jallcom.2022.166058

    Article  CAS  Google Scholar 

  85. J. Jiang, P. Chen, J. Qiu, W. Sun, I. Saikov, V. Shcherbakov, M. Alymov, Microstructural evolution and mechanical properties of AlxCoCrFeNi high-entropy alloys under uniaxial tension: a molecular dynamics simulations study. Mater. Today Commun. 28, 102525 (2021). https://doi.org/10.1016/j.mtcomm.2021.102525

    Article  CAS  Google Scholar 

  86. X. Dai, Y. Kong, J. Li, B. Liu, Extended finnis–sinclair potential for bcc and fcc metals and alloys. J. Phys. 18, 4527 (2006). https://doi.org/10.1088/0953-8984/18/19/008

    Article  CAS  Google Scholar 

  87. W. Stewart III., J. Roberts, N. Alexandropolous, K. Salama, Effect of hydrogen on the temperature dependence of the elastic constants of tantalum single crystals. J. Appl. Phys. 48, 75–81 (1977). https://doi.org/10.1063/1.323327

    Article  CAS  Google Scholar 

Download references

Acknowledgements

EMB thanks support by PICTO–UUMM-2019-00048 and SIIP-UNCuyo grant 06/M008-T1. CJR thanks support by Agencia I+D+i PICT-2018-00773 and a SiiP-UNCuyo grant. MC and NV thank an EVC-CIN Scholarship for scientific vocations. The simulations were run on the Toko-FCEN-UNCuyo computer cluster, part of SNCAD-MinCyT, Argentina. This work used computational resources from CCAD—Universidad Nacional de Córdoba (https://ccad.unc.edu.ar/), which are part of SNCAD—MinCyT, República Argentina.

Author information

Authors and Affiliations

Authors

Contributions

FA, NV, and MC: Matias: Formal analysis, Investigation, Writing—Original Draft, Visualization, and Data Curation. OD: Formal analysis, Investigation, Writing—Review & Editing, Visualization, and Data Curation. CJR: Methodology, Validation, Formal analysis, Investigation, Writing—Review & Editing, and Supervision, EMB: Conceptualization, Methodology, Validation, Formal analysis, Investigation, Supervision, Writing—Review & Editing, and Project administration.

Corresponding author

Correspondence to Eduardo M. Bringa.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1757 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aquistapace, F., Vazquez, N., Chiarpotti, M. et al. Atomistic Simulations of Ductile Failure in a b.c.c. High-Entropy Alloy. High Entropy Alloys & Materials 1, 84–95 (2023). https://doi.org/10.1007/s44210-022-00004-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44210-022-00004-6

Keywords

Navigation