Skip to main content
Log in

Utilization of Various Types of Biosorbents for Removal of Nitrites from Water

  • Review
  • Published:
Biomedical Materials & Devices Aims and scope Submit manuscript

Abstract

In rural India, nitrite-contaminated water is common. Economical and safe water treatment is needed to eliminate nitrite. Nitrite levels in drinking water are restricted because excess might induce methemoglobinemia (blue-baby syndrome). The world has 3% clean water. Nitrite-containing pollutants from human and industrial activities pollute water resources and jeopardize human and ecological health. Chemical precipitation and membrane filtration are expensive when treating large volumes of water, ineffective at low metal concentrations, and produce large amounts of toxic sludge and other byproducts that must be disposed of properly. Bio-sorption is a greener wastewater treatment technology. These cheaper, more accessible, and reusable methods have benefits over conventional ones. This study tests biosorbents such neem leaf, custard apple leaf, guava leaf, mango tree leaf, orange peel, and banana peel for nitrite removal from contaminated water and 100% removal was achieved. The effects of contact length, agitation speed, adsorbent dose, pH, and temperature are also examined. Before usage, biomass can be physically and chemically changed. Regenerating and reprocessing biosorbent after heavy metal removal makes the procedure cost-effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The statements in the paper are properly cited in the manuscript and no additional data is available.

References

  1. V. Parimala, K.K. Krishnani, B.P. Gupta, M. Jayanthi, M. Abraham, Phytoremediation of chromium from seawater using five different products from coconut husk. Bull. Environ. Contam. Toxicol. 73, 31–37 (2004)

    Article  CAS  PubMed  Google Scholar 

  2. S. Singh, P. Mishra, Use of different bioadsorbents for the nitrate removal from water. Int. J. Res. Appl. Sci. Eng. Technol. 6(4), 2781–2789 (2018)

    Article  Google Scholar 

  3. M. Suneetha, K. Ravindhranath, Removal of nitrates from polluted waters using bio-adsorbents. Int. J. Life Sci. Biotechnol. Pharm. Res. 1(3), 151–160 (2012)

    CAS  Google Scholar 

  4. U. Sumiya, N. Anu, Nitrate removal from synthetic wastewater by using bio-adsorbent. Int. J. Sci. Eng. Res. 7(4), 307–310 (2016)

    Google Scholar 

  5. C.A. Reddy, N. Prashanthi, P. Hari Babu, J.S. Mahale, Banana peel as a biosorbent in removal of nitrate from water. Int. Adv. Res. J. Sci. Eng. Technol. 2(10), 94–98 (2015)

    Article  Google Scholar 

  6. A. Mohseni-Bandpi, D.J. Elliott, M.A. Zazouli, Biological nitrate removal processes from drinking water supply-a review. J. Environ. Health Sci. Eng. 11(35), 1–11 (2013)

    Google Scholar 

  7. A. Battas, A. El Gaidoumi, A. Ksakas, A. Kherbeche, Adsorption study for the removal of nitrate from water, using local clay Hindawi. Sci. World J. (2019). https://doi.org/10.1155/2019/9529618

    Article  Google Scholar 

  8. V. Suneetha, K. Ravindhranath, Removal of ammonia from polluted waters using biosorbents derived from powders of leaves, stems or barks of some plants. Der Pharma Chemica 4(1), 214–227 (2012)

    CAS  Google Scholar 

  9. K. Gorre, V. Himabindu, Removal of ammoniacal nitrogen by using albite, activated carbon and resin. Int. J. Sci. Eng. Res. 6(5), 1–12 (2015)

    Google Scholar 

  10. K.P. Rani, K. Ravindhranath, The use of bio-adsorbents derived from Cassia Auriculata, Celastrus Paniculata and Carmona Retusa in the removal of ammonia from polluted waters. Der Pharma Chemica 6(3), 56–63 (2014)

    Google Scholar 

  11. V.K. Gupta, H. Sadegh, M. Yari, G. Shahryari, B. Maazinejad, M. Chahardori, Removal of ammonium ions from wastewater: a short review in development of efficient methods. Global J. Environ. Sci. Manage. 1(2), 149–158 (2015)

    CAS  Google Scholar 

  12. F. Gao, Y. Xue, P. Deng, X. Cheng, K. Yang, Removal of aqueous ammonium by biochars derived from agricultural residuals at different pyrolysis temperatures. Chem. Speciat. Bioavailab. 27(2), 92–97 (2015)

    Article  CAS  Google Scholar 

  13. K.P. Rani, K. Ravindhranath, Removal of ammonia from polluted waters using new bio-sorbents. J. Chem. Pharm. Res. 6(5), 889–900 (2014)

    Google Scholar 

  14. B.A.J. Anhwange, T.D. Ugye, M. Nyiaatagher, Chemical composition of musa sapientum (banana) peels. Elec. J. Environ. Agricult. Food Chem. 8(6), 437–442 (2009)

    CAS  Google Scholar 

  15. A. Zahra, A. Mohammad, Adsorptive removal of Co2+ and Ni2+ by peels of banana from aqueous solution. Univers. J. Chem. 1(3), 90–95 (2013)

    Article  Google Scholar 

  16. S. Rajoriya, B. Kaur, Adsorptive removal of zinc from waste water by natural biosorbents. Int. J. Eng. Sci. Invent. 3, 60–80 (2014)

    Google Scholar 

  17. M.C. Limbachiya, K.S. Nimavat, K.B. Vyas, Physico chemical analysis of ground water samples of bechraji region of gujarat state. India Asian J. Biochem. Pharm. Res. 2(1), 123–130 (2012)

    Google Scholar 

  18. R. Mithra, S. Sivaramakrishnan, P. Santhanam, Investigations on nutrients and heavy metal removal efficacy of seaweeds for wastewater remediation. J. Algal Biomass Util. 3, 21–27 (2012)

    Google Scholar 

  19. T. Chopin, A.H. Buschmann, M. Troell, N. Kautsky, A. Neori, C. Yarish, Integrating seaweeds into marine aquaculture systems: a key toward sustainability. J. Phycol. 37, 975–986 (2011)

    Article  Google Scholar 

  20. A. Neori, N.I.C. Ragg, M. Shpigel, The integrated culture of seaweed, abalone, fish and clams in modular intensive land based systems: II. Performance and nitrogen partitioning within an abalone (Haliotis tuberculata) and macroalgae culture system. Aquacult. Eng. 17, 215–239 (1998)

    Article  Google Scholar 

  21. J.O. Duruibe, M.O.C. Ogwuegbu, J.N. Egwurugwu, Heavy metal pollution and human biotoxic effects. Int. J. Phys. Sci. 2–5, 112–118 (2007)

    Google Scholar 

  22. R.A. Young, Toxicity profiles: toxicity summary for cadmium, risk assessment information system (University of Tennessee, RAIS, 2005)

    Google Scholar 

  23. D. Buono, M.L. Bartucca, T. Mimmo, S. Cesco, Nitrate removal from polluted water by using a vegetated floating system. Science 542, 803–808 (2015)

    Google Scholar 

  24. M.O. Rivett, S.R. Buss, P. Morgan, J.W.N. Smith, C.D. Bemment, Nitrate attenuation in groundwater: a review of biogeochemical controlling processes. Water Res. 42, 4215–4232 (2008)

    Article  CAS  PubMed  Google Scholar 

  25. D.C. Gooddy, D.M.J. Macdonald, D.J. Lapworth, S.A. Bennet, K.J. Griffiths, Nitrogen sources, transport and processing in peri-urban floodplains. Sci. Total. Environ. 494, 28–38 (2014)

    Article  PubMed  Google Scholar 

  26. E. Pilon-Smits, Phytoremediation. Annu. Rev. Plant Biol. 56(15–39), 27 (2005)

    Google Scholar 

  27. C.G. Lee, T.D. Fletcher, G. Sun, Nitrogen removal in constructed wetland systems. Eng. Life Sci. 9(1), 11–22 (2009)

    Article  CAS  Google Scholar 

  28. H. Cao, Y. Ge, D. Liu, Q. Cao, S.X. Chang, J. Chang, X. Song, X. Lin, Nitrate/ammonium ratios affect ryegrass growth and nitrogen accumulation in a hydroponic system. J. Plant Nutr. 34(2), 206–216 (2010)

    Article  Google Scholar 

  29. S.P. Boeykens, M.N. Piol, L.S. Legal, A.B. Saralegui, C. V´azquez, Eutrophication decrease: phosphate adsorption process in presence of nitrates. J. Environ. Manage. 203, 888–895 (2017)

    Article  CAS  PubMed  Google Scholar 

  30. M.H. Ward, J.D. Brender, Drinking water nitrate and human health. Encyclopedia of Environmental Health (Elsevier, Amsterdam, 2011), pp.167–178

    Google Scholar 

  31. M. Daud, Z. Khan, A. Ashgar, M.I. Danish, I.A. Qazi, Comparing and optimizing nitrate adsorption from aqueous solution using Fe/Pt bimetallic nanoparticles and anion exchange resins. J. Nanotechnol. 985984, 1–5 (2015)

    Google Scholar 

  32. R. Srinivasan, Advances in application of local adsorbent and its composites in removal of biological, organic and inorganic contaminants from drinking water. Adv. Adsorbent Sci. Eng. (2011). https://doi.org/10.1155/2011/872531

    Article  Google Scholar 

  33. M.F. Abou Taleb, G.A. Mahmoud, S.M. Elsigeny, E.S.A. Hegazy, Adsorption and desorption of phosphate and nitrate ions using quaternary (polypropylene-g-N, N-dimethylamino ethylmethacrylate) graf copolymer. J. Hazard. Mater. 159(2–3), 372–379 (2008)

    Article  CAS  PubMed  Google Scholar 

  34. A. Bhatnagar, M. Sillanp, A review of emerging adsorbents for nitrate removal from water. Chem. Eng. J. 168(2), 493–504 (2011)

    Article  CAS  Google Scholar 

  35. A.U. Baes, T. Okuda, W. Nishijima, E. Shoto, M. Okada, Adsorption and ion exchange of some groundwater anion contaminants in an amine modified coconut coir. Water Sci. Technol. 35(7), 89–95 (1997)

    Article  CAS  Google Scholar 

  36. A. Ozcan, M.S. Ahin, A.S. Ozcan, Adsorption of nitrate ions onto sepiolite and surfactant-modifed sepiolite. Adsorpt. Sci. Technol. 23(4), 323–334 (2005)

    Article  CAS  Google Scholar 

  37. D.Z. Borislav, J.C. Jiri, S. Martin, J. Josef, Pore classification in the characterization of porous materials: a perspective. Cent. Eur. J. Chem. 5(4), 385–395 (2007)

    Google Scholar 

  38. C. Fan, Y. Zhang, Adsorption isotherms, kinetics and thermodynamics of nitrate and phosphate in binary systems on a novel adsorbent derived from corn stalks. J. Geochem. Explor. 188, 95–100 (2018)

    Article  CAS  Google Scholar 

  39. C. Tien, B.V. Ramarao, Further examination of the relationship between the Langmuir kinetics and the lagergren and the second-order rate models of batch adsorption. Sep. Purif. Technol. 136, 303–308 (2014)

    Article  CAS  Google Scholar 

  40. S. Chatterjee, S.H. Woo, The removal of nitrate from aqueous solutions by chitosan hydrogel beads. J. Hazard. Mater. 164(2–3), 1012–1018 (2009)

    Article  CAS  PubMed  Google Scholar 

  41. U. Kuila, D.K. McCarty, A. Derkowski, T.B. Fischer, T. Top’or, M. Prasad, Nano-scale texture and porosity of organic matter and clay minerals in organic-rich mud rocks. Fuel 135, 359–373 (2014)

    Article  CAS  Google Scholar 

  42. C.T. Chiou, D.W. Rutherford, M. Manes, Sorption of nitrogen and ethylene glycol monoethyl ether (EGME) vapors on some soils, clays, and mineral oxides and determination of sample surface areas by use of sorption data. Environ. Sci. Technol. 27(8), 1587–1594 (1993)

    Article  CAS  Google Scholar 

  43. G. Felisa, R. Esther, B. Antonio, L.B. María, Á.M. Jesús, G. Camino, Algal biosorption and biosorbents. Microb. Biosorptions Metals (2011). https://doi.org/10.1007/978-94-007-0443-5_7

    Article  Google Scholar 

  44. P. Loganathan, S. Vigneswaran, J. Kandasamy, Enhanced removal of nitrate from water using surface modification of adsorbents–a review. J. Environ. Manag. 131, 363–374 (2013)

    Article  CAS  Google Scholar 

  45. V.K. Fadeeva, Effect of drinking water with different chloride contents on experimental animals. Gigienaisanitarija (in Russian) 36(6), 1115 (1971)

    Google Scholar 

  46. S. Dey, N.S.A. Kotaru, G.T.N. Veerendra, A. Sambangi, The removal of iron from synthetic water by the applications of plants leaf biosorbents. Clean. Eng. Technol. 9, 100530 (2022)

    Article  Google Scholar 

  47. A.C. Gonçalves, D. Schwantes, M.A. Campagnolo, D.C. Dragunski, C.R.T. Tarley, A.K.D.S. Silva, Removal of toxic metals using endocarp of açaí berry as biosorbent. Water Sci. Technol. 77, 1547–1557 (2018)

    Article  PubMed  Google Scholar 

  48. N. Basci, E. Kocadagistan, B. Kocadagistan, Biosorption of copper (II) from aqueous solutions by wheat shell. Desalination 164, 135–140 (2004)

    Article  CAS  Google Scholar 

  49. G.T.N. Veerendra, B. Kumaravel, P. Kodanda Rama Rao, S. Dey, A.V. Phani Manoj, Forecasting models for surface water quality using predictive analytics. Environ. Dev. Sustain 23(8), 1–21 (2023)

    Google Scholar 

  50. M. Akhtar et al., Sorption potential of rice husk for the removal of 2, 4-dichlorophenol from aqueous solutions: Kinetic and thermodynamic investigations. J. Hazard. Mater. 128(1), 44–52 (2006)

    Article  CAS  PubMed  Google Scholar 

  51. Y. Ma, W.J. Liu, N. Zhang, Y.S. Li, H. Jiang, G.P. Sheng, Polyethylenimine modified biochar adsorbent for hexavalent chromium removal from the aqueous solution. Bioresour. Technol. 169, 403–408 (2014)

    Article  CAS  PubMed  Google Scholar 

  52. H. Huang, X. Xiao, B. Yan, L. Yang, Ammonium removal from aqueous solutions by using natural Chinese (Chende) zeolite as adsorbent. J. Hazard. Mater. 175, 247–252 (2010)

    Article  CAS  PubMed  Google Scholar 

  53. U. Farooq, M.A. Khan, M. Athar, J.A. Kozinski, Effect of modification of environmentally friendly biosorbent wheat (Triticum aestivum) on the biosorptive removal of cadmium (II) ions from aqueous solution. Chem. Eng. J. 171, 400–410 (2011)

    Article  CAS  Google Scholar 

  54. Ç. Kırbıyık, M. Kılıç, Ö. Çepelioğullar, A.E. Pütün, Use of sesame stalks biomass for the removal of Ni(II) and Zn (II) from aqueous solutions. Water Sci Tech 66(2), 231–238 (2012)

    Article  Google Scholar 

  55. R. Gündoğan, B. Acemioğlu, M.H. Alma, Copper (II) adsorption from aqueous solution by herbaceous peat. J. Colloid Interface Sci. 269, 303–309 (2004)

    Article  PubMed  Google Scholar 

  56. J.N. Kumar, C. Oommen, Removal of heavy metals by biosorption using freshwater algae Spirogyra hyalina. J. Environ. Biol. 33, 27–36 (2012)

    CAS  PubMed  Google Scholar 

  57. G. Bayramoglu, G. Celik, Y. Arica, Biosorption of reactive blue 4 dye by native and treated fungus Phanero chaetechryso sporium: batch and continuous flow system studies. J. Hazard. Mater. 137, 1689–1697 (2006)

    Article  CAS  PubMed  Google Scholar 

  58. M. Gryndler, J. Rohlenova, J. Kopecky, M. Matucha, Chloride concentration affects soil microbial community. Chemosphere 71(7), 1401–1408 (2008)

    Article  CAS  PubMed  Google Scholar 

  59. Y. Guo, S. Yang, W. Fu, J. Qi, R. Li, Z. Wang, H. Xu, Adsorption of malachite green on micro- and mesoporous rice husk-based active carbon. Dyes Pigments 56(3), 219–229 (2003)

    Article  CAS  Google Scholar 

  60. S. Saranya, A.D. Gandhi, G. Suriyakala, S. Sathiyaraj, A. Purandaradas, T.N. Baskaran, P. Kavitha, R. Babujanarthanam, A biotechnological approach of Pb(II) sequestration from synthetic wastewater using floral wastes. SN Appl. Sci. 2, 1357–1368 (2020)

    Article  CAS  Google Scholar 

  61. D.T.C. Nguyen, T.V. Tran, P.S. Kumar, A.T.M. Din, A.A. Jalil, D.N. Vo, Invasive plants as biosorbents for environmental remediation: a review. Environ. Chem. Lett. 20, 1421–1451 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. A.A. Redha, Removal of heavy metals from aqueous media by biosorption. Arab J. Basic Appl. Sci. 27(1), 183–193 (2020)

    Article  Google Scholar 

  63. A. El-Sikaily, A. El Nemr, A. Khaled, O. Abdelwehab, Removal of toxic chromium from wastewater using green alga Ulva lactuca and its activated carbon. J. Hazard. Mater. 148, 216–228 (2007)

    Article  CAS  PubMed  Google Scholar 

  64. R.S. Juang, F.C. Wu, R.L. Tseng, Characterization and use of activated carbons prepared from bagasses for liquid-phase adsorption. Colloids Surf. A Physicochem. Eng. Asp. 201, 191–199 (2002)

    Article  CAS  Google Scholar 

  65. Y. Akemoto et al., Interpretation of the interaction between cesium ion and some clay minerals based on their structural features. Environ. Sci. Pollut. Res. 28(11), 14121–14130 (2021)

    Article  CAS  Google Scholar 

  66. A. Muthumariappan, M. Govindasamy, S.M. Chen et al., Screen-printed electrode modified with a composite prepared from graphene oxide nanosheets and Mn3O4 microcubes for ultrasensitive determination of nitrite. Microchim. Acta 184, 3625–3634 (2017)

    Article  CAS  Google Scholar 

  67. V. Mani, M. Govindasamy, S.M. Chen et al., Core-shell heterostructured multiwalled carbon nanotubes@ reduced graphene oxide nanoribbons/chitosan, a robust nanobiocomposite for enzymatic biosensing of hydrogen peroxide and nitrite. Sci. Rep. 7, 11910 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  68. M. Govindasamy, S.F. Wang, C.H. Huang et al., Colloidal synthesis of perovskite-type lanthanum aluminate incorporated graphene oxide composites: electrochemical detection of nitrite in meat extract and drinking water. Microchim. Acta 189, 210–228 (2022)

    Article  CAS  Google Scholar 

  69. P. Tamizhdurai, V.L. Mangesh, P. Santhan Krishnan, C. Kavitha, A. Vijay, R. Kumaran, M. Govindasamy, A.A. Alothman, M. Ouladsmane, Synthesis of ceria nanoparticles for the catalytic activity of cyclohexene epoxidation and selective detection of nitrite. J. Saudi Chem. Soc. 27(3), 101642 (2023)

    Article  CAS  Google Scholar 

  70. S. Dey, G.T.N. Veerendra, S.S. Anjaneya Babu Padavala, A.V. Phani Manoj, Evaluate the use of flower waste biosorbents for treatment of contaminated water. Water Energy Nexus 6, 187–230 (2023)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful for the support from all the faculty members and lab in charges of Civil Engineering Department, Gudlavalleru Engineering College.

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhashish Dey.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dey, S., Veerendra, G.T.N., Phani Manoj, A. . et al. Utilization of Various Types of Biosorbents for Removal of Nitrites from Water. Biomedical Materials & Devices 2, 861–882 (2024). https://doi.org/10.1007/s44174-023-00154-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44174-023-00154-0

Keywords

Navigation