Skip to main content
Log in

Coupled Effect of Axial Velocity of Insertion and Vibration of a Hypodermic Needle Puncturing into a Soft Brittle Solid

  • Original Article
  • Published:
Biomedical Materials & Devices Aims and scope Submit manuscript

Abstract

A hypodermic syringe needle, undergoing axial vibration, can puncture a soft solid at a load smaller than that is required when it is driven at a uniform axial velocity. While this decrease in insertion load is a function of dynamical features of the insertion process, geometric parameters and elastic modulus of the solid, the optimal range of values at which the effect of vibration becomes apparent and in fact maximize is not yet known. In this report, we have carried out systematic displacement-controlled puncturing of a soft yet brittle hydrogel material using syringe needles of range of diameter, at varying insertion speed, while subjecting it also to longitudinal vibration at different frequency and amplitude. After analyzing the experimental data, we have identified the relevant dimensionless quantities that can help identify the range of parameter values for which decrease in the insertion load of the needle maximizes. Our phenomenological model shows that the average axial speed of insertion of the needle and amplitude of vibration of the needle, both affect the percentage decrease in the puncturing load quite prominently. However, within the range of vibration frequency examined, its effect was not found to be significant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data have been presented in the report itself.

References

  1. M.J. Mack, JAMA 285, 568–572 (2001)

    Article  CAS  PubMed  Google Scholar 

  2. P.N. Brett, T.J. Parker, A.J. Harrison, T.A. Thomas, A. Carr, Proc. Inst. Mech. Eng. H 211, 335–347 (1997)

    Article  CAS  PubMed  Google Scholar 

  3. N. Abolhassani, R. Patel, M. Moallem, Med. Eng. Phys. 29, 413–431 (2007)

    Article  PubMed  Google Scholar 

  4. D. Hutchison, J.C. Mitchell, Lecture Notes in Computer Science, vol. 34, 540-68339-9 (2011)

  5. F. Casanova, P.R. Carney, M. Sarntinoranont, J. Neurosci. Methods 237, 79–89 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  6. B. Takabi, B.L. Tai, Med. Eng. Phys. 45, 1–14 (2017)

    Article  PubMed  Google Scholar 

  7. M. Sahlabadi, S. Khodaei, K. Jezler, P. Hutapea, Minim. Invasive Ther. Allied Technol. 27, 284–291 (2018)

    Article  PubMed  Google Scholar 

  8. M. Mahvash, P.E. Dupont, IEEE Trans. Biomed. Eng. 57, 934–943 (2009)

    Article  PubMed  PubMed Central  Google Scholar 

  9. S. Kaushik, A.H. Hord, D.D. Denson, D.V. McAllister, S. Smitra, M.G. Allen, M.R. Prausnitz, Anesth. Analg. 92, 502–504 (2001)

    Article  CAS  PubMed  Google Scholar 

  10. R.F. Donnelly, T.R.R. Singh, M.M. Tunney, D.I.J. Morrow, P.A. McCarron, C. O’Mahony, A.D. Woolfson, Pharm. Res. 26, 2513–2522 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. W. Martanto, S.P. Davis, N.R. Holiday, J. Wang, H.S. Gill, M.R. Prausnitz, Pharm. Res. 21, 947–952 (2004)

    Article  CAS  PubMed  Google Scholar 

  12. P. Arora, B. Mukherjee, J. Pharm. Sci. 91, 2076–2089 (2002)

    Article  CAS  PubMed  Google Scholar 

  13. X.Q. Kong, C.W. Wu, Phys. Rev. E 82, 1–5 (2010)

    Article  Google Scholar 

  14. S. Aoyagi, H. Izumi, M. Fukuda, Sens. Actuators A 143, 20–28 (2008)

    Article  CAS  Google Scholar 

  15. J. Wu, S. Yan, J. Zhao, Y. Ye, PLoS ONE (2014). https://doi.org/10.1371/journal.pone.0103823

    Article  PubMed  PubMed Central  Google Scholar 

  16. W.K. Cho, J.A. Ankrum, D. Guo, S.A. Chester, S.Y. Yang, A. Kashyap, G.A. Campbell, R.J. Wood, R.K. Rijal, R. Karnik, R. Langer, J.M. Karp, Proc. Natl. Acad. Sci. U.S.A. 109, 21289–21294 (2012)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. D.R. Huber, P.J. Motta, J. Exp. Zool. A 301, 26–37 (2004)

    Article  Google Scholar 

  18. S. Das, A. Ghatak, J. Mater. Sci. 46, 2895–2904 (2011)

    Article  ADS  CAS  Google Scholar 

  19. S. Das, S. Laha, A. Ghatak, Soft Matter 10(32), 6059–6067 (2014)

    Article  ADS  CAS  PubMed  Google Scholar 

  20. A.C. Barnett, Y.S. Lee, J.Z. Moore, Proc. Inst. Mech. Eng. B 232(5), 827–837 (2018)

    Article  Google Scholar 

  21. K.K. Kundan, S. Laha, A. Ghatak, Extrem. Mech. Lett. 26, 26–34 (2019)

    Article  Google Scholar 

  22. Y. Han, L. Tan, Z. Liu, Q. Zhang, H. Zhang, Exp. Tech. (2023). https://doi.org/10.1007/s40799-023-00632-6

    Article  Google Scholar 

  23. A. Ghatak, A.L. Das, Phys. Rev. Lett. 99, 076101–076104 (2007)

    Article  ADS  PubMed  Google Scholar 

  24. K.K. Kundan, A. Ghatak, Soft Matter 14, 1365–1374 (2018)

    Article  ADS  CAS  PubMed  Google Scholar 

  25. M. Muthukumar, M.S. Bobji, K.R.Y. Simha, Soft Matter 17, 2823–2831 (2021)

    Article  ADS  CAS  PubMed  Google Scholar 

  26. M. Muthukumar, M.S. Bobji, K.R.Y. Simha, Soft Matter 18, 3521–3530 (2022)

    Article  ADS  Google Scholar 

  27. R. Melzack, P. Wall, Science 150, 971–979 (1965)

    Article  ADS  CAS  PubMed  Google Scholar 

  28. K.J. Sufka, D.D. Price, Brain Mind 2, 277–290 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

A.G. acknowledges the Science and Engineering Research Board (SERB) Grant STR/2019/000044 for financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Animangsu Ghatak.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kundan, K.K., Ghatak, A. Coupled Effect of Axial Velocity of Insertion and Vibration of a Hypodermic Needle Puncturing into a Soft Brittle Solid. Biomedical Materials & Devices 2, 454–460 (2024). https://doi.org/10.1007/s44174-023-00096-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44174-023-00096-7

Keywords

Navigation