Skip to main content

Advertisement

Log in

Performance of Metallic-Based Nanomaterials Doped with Strontium in Biomedical and Supercapacitor Electrodes: A Review

  • Review
  • Published:
Biomedical Materials & Devices Aims and scope Submit manuscript

Abstract

Metallic-based nanomaterials have had their characteristics significantly enhanced by the incorporation of traces of strontium nanoparticles (NPs) into their matrix. These elements considerably improve the mechanical and biological response properties, as well as the tenacity, durability, and drug release. They are utilized in chemosensors, electronics, medication delivery, cancer treatment, bone engineering, environmental management, bioimaging, and drug delivery. We are particularly interested in the biological and supercapacitor electrode applications of strontium-based nanoparticles. Numerous studies have examined the performance of various metallic NPs doped with strontium in supercapacitor and biological applications. According to their research, strontium-doped versions of these materials exhibit better biomedical and heightened supercapacitor electrode performance as compared to bare metallic NPs. As a result, this work investigated the development of strontium-based nanoparticles in biomedical applications, with a focus on their importance in bone regeneration, effective immunotherapy, the management of bacterial infections, medicine delivery, and dentistry. The potential applications of strontium-doped metal NPs for making electrodes in supercapacitors were also discussed in the context of electronics.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

FCC:

Face center cubic

NPs:

Nanoparticles

Sr-NPs:

Strontium nanoparticles

LTO:

Lanthanum titanate

SC:

Supercapacitor

EIS:

Electrochemical impedance spectroscopy

GCD:

Galvanostatic charge/discharge

CV:

Cyclic voltammetry

SrO:

Strontium oxide

PLGA:

Poly lactic-co-glycolic acid

ROS:

Reactive oxygen species

HAP:

Hydroxyapatite

SrHAP:

Strontium totally substituted hydroxyapatite

LSM:

La1−x SrxMnO3

rhBMP2:

Recombinant human bone morphogenetic protein 2

SrRNPs:

Strontium ranelate nanoparticles

HA:

Hyaluronic acid

PEGDA:

Poly(ethylene glycol) diacrylate

ASIT:

Allergen-specific immunotherapy

DCs:

Dendritic cells

OVA:

Ovalbumin

CS:

Chitosan

ALP:

Alkaline phosphatase

ATP:

Adenosine triphosphate

ROS:

Reactive oxygen species

RNA:

Ribonucleic acid

DNA:

Deoxyribonucleic acid

SBF:

Simulated bodily fluid

References

  1. J. Ahmad, R. Wahab, M.A. Siddiqui, Q. Saquib, N. Ahmad, A.A. Al-Khedhairy, Strontium-doped nickel oxide nanoparticles: synthesis, characterization, and cytotoxicity study in human lung cancer A549 cells. Biol. Trace Elem. Res. 200, 1598–1607 (2021). https://doi.org/10.1007/s12011-021-02780-5

    Article  CAS  Google Scholar 

  2. https://www.routledge.com/rsc/downloads/Tables_for_100th_Ed.pdf

  3. P. Zhao, Q. Wang, C. Zhai, Y. Zhu, Effects of strontium and titanium on the microstructure, tensile properties and creep behavior of AM50 alloys. Mater. Sci. Eng. A 444(1–2), 318–326 (2007). https://doi.org/10.1016/j.msea.2006.08.111

    Article  CAS  Google Scholar 

  4. S.O. Omorogbe, S.O. Ikhuoria, I.H. Ifijen, A. Simo, A.I. Aigbodion, M. Maaza, Fabrication of monodispersed needle-sized hollow-core polystyrene microspheres. The Minerals, Metals & Mater Soc (ed.), TMS 2019 148th Annual Meeting & Exhibition Supplemental Proceedings, pp. 155–164 (2019). https://doi.org/10.1007/978-3-030-05861-6_1410.1007/978-3-030-05861-6_14

  5. S.O. Omorogbe, A.I. Aigbodion, H.I. Ifijen, N. Ogbeide-Ihama, A. Simo, E.U. Ikhuoria, Low-temperature synthesis of superparamagnetic Fe3O 4 morphologies tuned using oleic acid as crystal growth modifier. In Book: TMS, 149th Annual Meeting & Exhibition Supplemental Proceedings, pp. 619–631 (2020). https://doi.org/10.1007/978-3-030-36296-6,58.

  6. I.H. Ifijen, E.U. Ikhuoria, Generation of highly ordered 3d vivid monochromatic coloured photonic crystal films using the evaporative induced technique. Tanzania J. Sci. 45(3), 439449 (2019)

    Google Scholar 

  7. I.H. Ifijen, E.U. Ikhuoria, Monodisperse polystyrene microspheres: studies on the effects of reaction parameters on particle diameter. Tanzania J. Sci. 46(1), 19–30 (2020)

    Google Scholar 

  8. I.H. Ifijen, E.U. Ikhuoria, S.O. Omorogbe, Correlative studies on the fabrication of poly (styrene-methyl-methacrylate-acrylic acid) colloidal crystal films. J. Dispers. Sci. Technol. 40(7), 1–8 (2018). https://doi.org/10.1080/01932691.2018.1494605

    Article  CAS  Google Scholar 

  9. I.H. Ifijen, E.U. Ikhuoria, S.O. Omorogbe, A.I. Aigbodion, Ordered colloidal crystals fabrication and studies on the properties of poly (styrene-butyl acrylate-acrylic acid) and polystyrene latexes, in Nanocomposites VI: Nanoscience and Nanotechnology in Advanced Composites. The Minerals, Metals & Mater Series, eds. by T. Srivatsan, M. Gupta (2019). Springer, Cham, pp. 155–164. https://doi.org/10.1007/978-3-030-35790-0_11

  10. I.H. Ifijen, M. Maliki, O.B. Ovonramwen, A.I. Aigbodion, E.U. Ikhuoria, Brilliant coloured monochromatic photonic crystals films generation from poly (styrenebutyl acrylate-acrylic acid) latex. J. Appl. Sci. Environ. Manag. 23(9), 1661–1664 (2019)

    CAS  Google Scholar 

  11. I.H. Ifijen, S.O. Omorogbe, M. Maliki, I.J. Odiachi, A.I. Aigbodion, E.U. Ikhuoria, Stabilizing capability of gum arabic on the synthesis of poly (styrene-methylmethacrylate-acrylic acid) latex for the generation of colloidal crystal films. Tanzania J. Sci. 46(2), 345–353 (2020)

    Google Scholar 

  12. S.O. Omorogbe, E.U. Ikhuoria, L.I. Igiehon, G.O. Agbonlahor, I.H. Ifijen, A.I. Aigbodion, Characterization of sulphated cellulose nanocrystals as stabilizer for magnetite nanoparticles synthesis with improved magnetic properties. Nig. J. Mater. Sci. Eng. 7(2), 23–27 (2017)

    Google Scholar 

  13. I.H. Ifijen, E.U. Ikhuoria, A.I. Aigbodion, S.O. Omorogbe, Impact of varying the concentration of tetraethyl-orthosilicate on the average particle diameter of monodisperse colloidal silica spheres. Chem. Sci. J. 9(1), 183–185 (2018). https://doi.org/10.4172/2150-3494.1000183

    Article  Google Scholar 

  14. E.U. Ikhuoria, I.H. Ifijen, O.P. Georgina, A.C. Ehigie, S.O. Omorogbe, A.I. Aigbodion, The adsorption of heavy metals from aqueous solutions using silica microparticles synthesized from sodium silicate, in Ni-Co 2021: The 5th Intn’l Symposium on Ni and Co, pp. 195–205 (2020). https://doi.org/10.1007/978-3-030-65647-8_16

  15. I.H. Ifijen, A.B. Itua, M. Maliki, C.O. Ize-Iyamu, S.O. Omorogbe, A.I. Aigbodion, E.U. Ikhuoria, The removal of nickel and lead ions from aqueous solutions using green synthesized silica microparticles. Heliyon 6(9), e04907 (2020). https://doi.org/10.1016/j.heliyon.2020.e04907

    Article  CAS  Google Scholar 

  16. Ifijen I.H., Ikhuoria E.U., Maliki M., Otabor G.O., Aigbodion A.I. (2022) Nanostructured materials: a review on its application in water treatment, in The Minerals, Metals & Materials Society (eds) TMS 2022 151st Annual Meeting & Exhibition Supplemental Proceedings. The Minerals, Metals & Materials Series, pp. 1172–1180. Springer, Cham. https://doi.org/10.1007/978-3-030-92381-5_111

  17. I.H. Ifijen, O.N. Aghedo, I.J. Odiachi, S.O. Omorogbe, E.L. Olu, I.C. Onuguh, Nanostructured graphene thin films: a brief review of their fabrication techniques and corrosion protective performance, in The Minerals, Metals & Materials Society (eds) TMS 2022 151st Annual Meeting & Exhibition Supplemental Proceedings. The Minerals, Metals & Materials Series, pp. 366–377. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-92381-5_33.

  18. I.H. Ifijen, M. Maliki, S.O. Omorogbe, S.D. Ibrahim, Incorporation of metallic nanoparticles into alkyd resin: a review of their coating performance, in The Minerals, Metals & Materials Society (eds) TMS 2022 151st Annual Meeting & Exhibition Supplemental Proceedings. The Minerals, Metals & Materials Series, pp. 338–349. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-92381-5_31.

  19. R. Boulkroune, M. Sebais, Y. Messai, R. Bourzami, M. Schmutz, C. Blanck, O. Halimi, B. Boudine, Hydrothermal synthesis of strontium-doped ZnS nanoparticles: structural, electronic and photocatalytic investigations. Bull. Mater. Sci. 42, 223 (2019). https://doi.org/10.1007/s12034-019-1905-2

    Article  CAS  Google Scholar 

  20. S. Mukherjee, M. Mishra, Application of strontium-based nanoparticles in medicine and environmental sciences. Nanotechnol. Environ. Eng. 6(25), 1–15 (2020). https://doi.org/10.1007/s41204-021-00115-2

    Article  CAS  Google Scholar 

  21. G. Jayakumar, D.S. Poomagal, A.A. Irudayaraj, A.D. Raj, S.K. Thresa, P. Akshadha, Study on structural, magnetic and electrical properties of perovskite lanthanum strontium manganite nanoparticles. J. Mater. Sci.: Mater. Electron. 31, 20945–20953 (2020). https://doi.org/10.1007/s10854-020-04608-9

    Article  CAS  Google Scholar 

  22. P. Ptáček, Other technical applications of strontium containing materials’, in Strontium Aluminate—Cement Fundamentals, Manufacturing, Hydration, Setting Behaviour and Applications. ed. by P. Ptacek (Intech Open, London, 2014), pp.187–217. https://doi.org/10.5772/58613

    Chapter  Google Scholar 

  23. G. Montagna, F. Cristofaro, L. Fassina, G. Bruni, L. Cucca, A. Kochen, P.P. Divieti, B. Bragdon, L. Visai, L.C. Gerstenfeld, An invivo comparison study between strontium nanoparticles and rhBMP2. Front. Bioeng. Biotechnol. 16(8), 499 (2020). https://doi.org/10.3389/fbioe.2020.00499

    Article  CAS  Google Scholar 

  24. A. Bakhtiar, E.H. Chowdhury, PH-responsive strontium nanoparticles for targeted gene therapy against mammary carcinoma cells. Asian J. Pharm. Sci. 16(2), 236–252 (2021). https://doi.org/10.1016/j.ajps.2020.11.002

    Article  Google Scholar 

  25. A. Alimuddin, M. Rafeeq, Synthesis and characterization of strontium oxide nano particle by sol-gel method. Orient J. Chem. 37(1), 177–180 (2021). https://doi.org/10.13005/ojc/370124

    Article  CAS  Google Scholar 

  26. F. Foroutan, B.A. Kyffin, I. Abrahams, J.C. Knowles, E. Sogne, A. Falqui, D. Carta, Mesoporous strontium-doped phosphate-based sol-gel glasses for biomedical applications. Front. Chem. 8, 249 (2020). https://doi.org/10.3389/fchem.2020.00249

    Article  CAS  Google Scholar 

  27. A. Ouhaibi, M. Ghamnia, M.A. Dahamni, V. Heresanu, C. Fauquet, D. Tonneau, The effect of strontium doping on structural and morphological properties of ZnO nanofilms synthesized by ultrasonic spray pyrolysis method. J. Sci.: Adv. Mater. Devices 3(1), 29–36 (2018). https://doi.org/10.1016/j.jsamd.2018.01.004

    Article  Google Scholar 

  28. A.P. Hekimoğlu, M. Çalış, G. Ayata, Effect of strontium and magnesium additions on the microstructure and mechanical properties of Al–12Si alloys. Met. Mater. Int. 25(6), 1488–1499 (2019). https://doi.org/10.1007/s12540-019-00429-6

    Article  CAS  Google Scholar 

  29. R. Guan, A.F. Cipriano, Z. Zhao, J. Lockb, D. Tie, T. Zhao, T. Cui, H. Liu, Development and evaluation of a magnesium–zinc–strontium alloy for biomedical applications-alloy processing, microstructure, mechanical properties, and biodegradation. Mater. Sci. Eng. C 33(7), 3661–3669 (2013). https://doi.org/10.1016/j.msec.2013.04.054

    Article  CAS  Google Scholar 

  30. M. Schumacher, A. Henß, M. Rohnke, M. Gelinsky, A novel and easy-to-prepare strontium (II) modified calcium phosphate bone cement with enhanced mechanical properties. Acta Biomater. 9(7), 7536–7544 (2013). https://doi.org/10.1016/j.actbio.2013.03.014

    Article  CAS  Google Scholar 

  31. R. Karthick, P. Sakthivel, C. Selvaraju, M.S. Paulraj, Tuning of photoluminescence and antibacterial properties of ZnO nanoparticles through Sr doping for biomedical applications. J Nanomater 2021, 1–7 (2021). https://doi.org/10.1155/2021/8352204

    Article  CAS  Google Scholar 

  32. Y. Wang, J. Guo, T. Wang, J. Shao, D. Wang, Y. Yang, Mesoporous transition metal oxides for supercapacitors. Nanomater. 5, 1667–1689 (2015). https://doi.org/10.3390/nano5041667

    Article  CAS  Google Scholar 

  33. Z. Yu, L. Tetard, L. Zhai, J. Thomas, Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions. Energy Environ Sci. 8, 702–730 (2015). https://doi.org/10.1039/C4EE03229B

    Article  CAS  Google Scholar 

  34. C. An, Y. Zhang, H. Guo, Y. Wang, Metal oxide-based supercapacitors: progress and prospectives. Nanoscale Adv. 2019(1), 4644–4658 (2019). https://doi.org/10.1039/C9NA00543A

    Article  Google Scholar 

  35. S. Jadhav, R.S. Kalubarme, C. Terashima, B.B. Kale, V. Godbole, A. Fujishima, S.W. Gosavi, Manganese dioxide/ reduced graphene oxide composite an electrode material for high-performance solid state supercapacitor. Electrochim. Acta 299, 34–44 (2019). https://doi.org/10.1016/j.electacta.2018.12.182

    Article  CAS  Google Scholar 

  36. Y. Huang, Y. Zhu, S. Bao, S. Kang, J. Lu, Interfacial polymerization of polyaniline/Fe(OH)3/graphene nanocomposites and its energy storage properties. Mater. Technol. 35(9), 534–545 (2019). https://doi.org/10.1080/10667857.2019.1699729

    Article  CAS  Google Scholar 

  37. J.L. Alvaro, A.I. Gonçalves, Rodrigues, M.T. Gomes, M.E. Mano, J.F. Mano, Strontium doped bioactive glass nanoparticles in osteogenic commitment. ACS Appl. Mater. Interfaces 10(27), 23311–23320 (2018). https://doi.org/10.1021/acsami.8b06154

    Article  CAS  Google Scholar 

  38. S. Bano, M. Akhtar, M. Yasir, M. Salman Maqbool, A. Niaz, A. Wadood, M.A. Ur Rehman, Synthesis and characterization of silver-strontium (Ag-Sr)-doped mesoporous bioactive glass nanoparticles. Gels 7(2), 34 (2021). https://doi.org/10.3390/gels7020034

    Article  CAS  Google Scholar 

  39. V.V. Deshmukh, C.R. Ravikumar, M.R.A. Kumar, S. Ghotekar, A.N. Kumar, A.A. Jahagirdar, H.C.A. Murthy, Structure, morphology, and electrochemical properties of SrTiO3 perovskite: Photocatalytic and supercapacitor applications. Environ. Chem. Ecotoxicol. 3, 241–248 (2021). https://doi.org/10.1016/j.enceco.2021.07.001

    Article  CAS  Google Scholar 

  40. R. Karthick, P. Sakthivel, C. Selvaraju, M.S. Paulraj, Tuning of photoluminescence and antibacterial properties of ZnO nanoparticles through Sr doping for biomedical applications. J. Nanomater. 2021, 8352204 (2021). https://doi.org/10.1155/2021/8352204

    Article  CAS  Google Scholar 

  41. C. Wang, J. Irudayaraj, Multifunctional magnetic-optical nanoparticle probes for simultaneous detection, separation, and thermal ablation of multiple pathogens. Small 6, 283–289 (2010). https://doi.org/10.1002/smll.200901596

    Article  CAS  Google Scholar 

  42. A. Ito, M. Kamihira, Tissue engineering using magnetite nanoparticles. Prog. Mol. Biol. Transl. Sci. 104, 355–395 (2011). https://doi.org/10.1016/B978-0-12-416020-0.00009-7

    Article  CAS  Google Scholar 

  43. M. Okamoto, B. John, Synthetic biopolymer nanocomposites for tissue engineering scaffolds. Prog. Polym. Sci. 38(10–11), 1487–1503 (2013). https://doi.org/10.1016/j.progpolymsci.2013.06.001

    Article  CAS  Google Scholar 

  44. I.K. Herrmann, M. Urner, F.M. Koehler, M. Hasler, B. Roth-Z’graggen, R.N. Grass, U. Ziegler, B. Beck-Schimmer, W.J. Stark, Blood Purification using functionalized core/shell nanomagnets. Small 6, 1388–1392 (2010). https://doi.org/10.1002/smll.201000438

    Article  CAS  Google Scholar 

  45. X. Luo, A. Morrin, A.J. Killard, M.R. Smyth, Application of nanoparticles in electrochemical sensors and biosensors. Electroanalysis 18, 319–326 (2006). https://doi.org/10.1002/elan.200503415

    Article  CAS  Google Scholar 

  46. C. Zhang, C. Li, S. Huang, Z. Hou, Z. Cheng, P. Yang, C. Peng, J. Lin, Self-activated luminescent and mesoporous strontium hydroxyapatite nanorods for drug delivery. Biomaterials 31(12), 3374–3383 (2010). https://doi.org/10.1016/j.biomaterials.2010.01.044

    Article  CAS  Google Scholar 

  47. R.Y. Pelgrift, A.J. Friedman, Nanotechnology as a therapeutic tool to combat microbial resistance. Adv. Drug. Deliv. Rev. 65, 1803–1815 (2013). https://doi.org/10.1016/j.addr.2013.07.011

    Article  CAS  Google Scholar 

  48. V. Lobo, A. Patil, A. Phatak, N. Chandra, Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn. Rev. 4(8), 118–126 (2010). https://doi.org/10.4103/0973-7847.70902

    Article  CAS  Google Scholar 

  49. A.A. Shah, A. Gupta, Antioxidants in health and disease with their capability to defend pathogens that attack apple species of kashmir, in Plant Antioxidants and Health. Reference Series in Phytochemistry. ed. by H.M. Ekiert, K.G. Ramawat, J. Arora (Springer, Cham, 2021). https://doi.org/10.1007/978-3-030-45299-5_13-1

    Chapter  Google Scholar 

  50. R. Edge, T.G. Truscott, The reactive oxygen species singlet oxygen, hydroxy radicals, and the superoxide radical anion—examples of their roles in biology and medicine. Oxygen 1(2), 77–95 (2021)

    Article  Google Scholar 

  51. P. Bhattacharya, S. Neogi, Antibacterial properties of doped nanoparticles. Rev. Chem. Eng. 35(7), 861–876 (2019). https://doi.org/10.1515/revce-2017-01161-16

    Article  CAS  Google Scholar 

  52. M. Carofiglio, S. Barui, V. Cauda, M. Laurenti, Doped zinc oxide nanoparticles: synthesis, characterization and potential use in nanomedicine. Appl. Sci. 10(15), 5194 (2020). https://doi.org/10.3390/app10155194

    Article  CAS  Google Scholar 

  53. L. Wang, C. Hu, L. Shao, The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int. J. Nanomed. 12, 1227–1249 (2017). https://doi.org/10.2147/IJN.S121956

    Article  CAS  Google Scholar 

  54. D. Beri, M. Jakoby, D. Busko, B.S. Richards, A. Turshatov, Enhancing singlet oxygen generation in conjugates of silicon nanocrystals and organic photosensitizers. Front. Chem. 8, 567 (2020). https://doi.org/10.3389/fchem.2020.00567

    Article  CAS  Google Scholar 

  55. M. Hayyan, M.A. Hashim, I.M. AlNashef, superoxide ion: generation and chemical implications. Chem. Rev. 116(5), 3029–3085 (2016). https://doi.org/10.1021/acs.chemrev.5b00407

    Article  CAS  Google Scholar 

  56. E. Burello, A.P. Worth, A theoretical framework for predicting the oxidative stress potential of oxide nanoparticles. Nanotoxicology 5, 228–235 (2011). https://doi.org/10.3109/17435390.2010.502980

    Article  CAS  Google Scholar 

  57. B. Lipinski, Hydroxyl radical and its scavengers in health and disease. Oxid. Med. Cell. Longev. 2011, 809696 (2011). https://doi.org/10.1155/2011/809696

    Article  CAS  Google Scholar 

  58. A. Gajewicz, N. Schaeublin, B. Rasulev, S. Hussain, D. Leszczynska, T. Puzyn, T. Puzyn, J. Leszczynski, Towards understanding mechanisms governing cytotoxicity of metal oxides nanoparticles: hints from nano-QSAR studies. Nanotoxicology 9, 313–325 (2015). https://doi.org/10.3109/17435390.2014.930195

    Article  CAS  Google Scholar 

  59. Y. Lin, Z. Yang, J. Cheng, L. Wang, Synthesis, characterization and antibacterial property of strontium half and totally substituted hydroxyapatite nanoparticles. J. Wuhan Univ. Technol. Mater. Sci. Edit 23, 475–479 (2008). https://doi.org/10.1007/s11595-006-4475-2

    Article  CAS  Google Scholar 

  60. G.A. Fielding, M. Roy, A. Bandyopadhyay, S. Bose, Antibacterial and biological characteristics of silver containing and strontium doped plasma sprayed hydroxyapatite coatings. Acta Biomater. 8(8), 3144–3152 (2012). https://doi.org/10.1016/j.actbio.2012.04.004

    Article  CAS  Google Scholar 

  61. L. Chen, H. Pan, C. Zhuang, M. Peng, Li. Zhang, Joint wound healing using polymeric dressing of chitosan/strontium-doped titanium dioxide with high antibacterial activity. Mater. Lett. 268, 127555 (2020). https://doi.org/10.1016/j.matlet.2020.127555

    Article  CAS  Google Scholar 

  62. F.A. Kiani, U. Shamraiz, A. Badshah, S. Tabassum, M. Ambreen, J.A. Patujo, Optimization of Ag2O nanostructures with strontium for biological and therapeutic potential. Artif. Cells Nanomed. Biotechnol. 46(sup3), S1083–S1091 (2018). https://doi.org/10.1080/21691401.2018.1529678

    Article  CAS  Google Scholar 

  63. A.M. Allahverdiyev, E.S. Abamor, M. Bagirova, M. Rafailovich, Antimicrobial effects of TiO2 and Ag2O nanoparticles against drug-resistant bacteria and leishmania parasites. Future Microbiol. 6(8), 933–940 (2011). https://doi.org/10.2217/fmb.11.78

    Article  CAS  Google Scholar 

  64. C.W. Chiang, C.H. Chen, Y.B. Manga, S.C. Huang, K.M. Chao, P.R. Jheng, P.C. Wong, B. Nyambat, M.K. Satapathy, E.Y. Chuang, Facilitated and controlled strontium ranelate delivery using GCS-HA nanocarriers embedded into PEGDA coupled with decortication driven spinal regeneration. Int. J. Nanomed. 16, 4209–4224 (2021). https://doi.org/10.2147/IJN.S27446

    Article  Google Scholar 

  65. B.L. Guo, P. Han, L.C. Guo, Y.Q. Cao, A.D. Li, J.Z. Kong, H.F. Zhai, D. Wu, The Antibacterial Activity of Ta-doped ZnO Nanoparticles. Nanoscale Res. Lett. 10(1), 1047 (2015). https://doi.org/10.1186/s11671-015-1047-4

    Article  CAS  Google Scholar 

  66. S.C. Verberckmoes, M.E. De Broe, P.C. D’Haese, Dose dependent effects of strontium on osteoblast function and mineralization. Kidney Int. 64(2), 534–543 (2003). https://doi.org/10.1046/j.1523-1755.2003.00123.x

    Article  CAS  Google Scholar 

  67. K. Qiu, X.J. Zhao, C.X. Wan, C.S. Zhao, Y.W. Chen, Effect of strontium ions on the growth of ROS17/28 cells on porous calcium polyphosphate scaffolds. Biomaterials 27(8), 1277–1286 (2006). https://doi.org/10.1016/j.biomaterials.2005.08.006

    Article  CAS  Google Scholar 

  68. M.P. Nikolova, M.S. Chavali, Recent advances in biomaterials for 3D scaffolds: a review. Bioactive Mater. 4, 271–292 (2019). https://doi.org/10.1016/j.bioactmat.2019.10.005

    Article  Google Scholar 

  69. E. Fiume, J. Barberi, E. Verné, F. Baino, Bioactive glasses: from parent 45S5 composition to scaffold-assisted tissue-healing therapies. J. Funct. Biomater. 9(1), 24 (2018). https://doi.org/10.3390/jfb9010024

    Article  CAS  Google Scholar 

  70. L. Ji, W. Wang, D. Jin, S. Zhou, X. Song, In vitro bioactivity and mechanical properties of bioactive glass nanoparticles/polycaprolactone composites. Mater. Sci. Eng. C Mater. Biol. Appl. 46, 1–9 (2015). https://doi.org/10.1016/j.msec.2014.09.041

    Article  CAS  Google Scholar 

  71. A.C. Özarslan, S. Yücel, Fabrication and characterization of strontium incorporated 3-D bioactive glass scafolds for bone tissue from biosilica. Mater. Sci. Eng. C 68, 350–357 (2016). https://doi.org/10.1016/j.msec.2016.06.004

    Article  CAS  Google Scholar 

  72. S.K. Arepalli, H. Tripathi, S.K. Hira, P.P. Manna, R. Pyare, S.P. Singh, Enhanced bioactivity, biocompatibility and mechanical behavior of strontium substituted bioactive glasses. Mater. Sci. Eng. C 69(1), 108–116 (2016). https://doi.org/10.1016/j.msec.2016.06.070

    Article  CAS  Google Scholar 

  73. J. Isaac, J. Nohra, J. Lao, E. Jallot, J.M. Nedelec, A. Berdal, J.M. Sautier, Effects of strontium-doped bioactive glass on the differentiation of cultured osteogenic cells. Eur. Cell Mater. 21, 130–143 (2011). https://doi.org/10.22203/ecm.v021a11

    Article  CAS  Google Scholar 

  74. M. Shaltooki, G. Dini, M. Mehdikhani, Fabrication of chitosan-coated porous polycaprolactone/strontium-substituted bioactive glass nanocomposite scafold for bone tissue engineering. Mat. Sci. Eng. C 105, 110138 (2019). https://doi.org/10.1016/j.msec.2019.110138

    Article  CAS  Google Scholar 

  75. N. Baheiraei, H. Eyni, Bakhshi, R. Najafloo, N. Rabiee, Effects of strontium ions with potential antibacterial activity on in vivo bone regeneration. Sci. Rep. 11, 8745 (2011). https://doi.org/10.1038/s41598-021-88058-1

    Article  CAS  Google Scholar 

  76. C. Wu, Y. Zhou, C. Lin, J. Chang, Y. Xiao, Strontium-containing mesoporous bioactive glass scafolds with improved osteogenic/cementogenic diferentiation of periodontal ligament cells for periodontal tissue engineering. Acta Biomater. 8(10), 3805–3815 (2012). https://doi.org/10.1016/j.actbio.2012.06.023

    Article  CAS  Google Scholar 

  77. C. Wu, Y. Ramaswamy, D. Kwik, H. Zreiqat, The effect of strontium incorporation into CaSiO3 ceramics on their physical and biological properties. Biomaterials 28(21), 3171–3181 (2007). https://doi.org/10.1016/j.biomaterials.2007.04.002

    Article  CAS  Google Scholar 

  78. I. Ullah, W. Li, S. Lei, Y. Zhang, W. Zhang, U. Farooq, S. Ullah, M.W. Ullah, X. Zhang, Simultaneous co-substitution of Sr2+/Fe3+ in hydroxyapatite nanoparticles for potential biomedical applications. Ceram. Int. 44(17), 21338–21348 (2018). https://doi.org/10.1016/j.ceramint.2018.08.187

    Article  CAS  Google Scholar 

  79. Q. Li, S. Zheng, Y. Xu, H. Xue, H. Pang, Ruthenium based materials as electrode materials for supercapacitors. Chem. Eng. J. 333, 505–518 (2018)

    Article  CAS  Google Scholar 

  80. W. Wang, K. Yeung, Bone grafts and biomaterials substitute for bone defect repair: a review. Bioactive Mater. 2(4), 224–247 (2017). https://doi.org/10.1016/j.bioactmat.2017.05.007

    Article  Google Scholar 

  81. X. Feng, Chemical and biochemical basis of cell-bone matrix interaction in health and disease. Curr. Chem. Biol. 3(2), 189–196 (2009). https://doi.org/10.2174/187231309788166398

    Article  CAS  Google Scholar 

  82. S.R.K. Meka, S. Jain, K. Chatterjee, Strontium eluting nanofbers augment stem cell osteogenesis for bone tissue regeneration. Colloids Surf. B Biointerfaces 146, 649–656 (2016)

    Article  CAS  Google Scholar 

  83. H. Liu, T.J. Webster, Mechanical properties of dispersed ceramic nanoparticles in polymer composites for orthopedic applications. Int. J. Nanomed. 5, 299–313 (2010). https://doi.org/10.2147/ijn.s9882

    Article  CAS  Google Scholar 

  84. B.L. Riggs, S. Khosla, L.J. Melton, Sex steroids and the construction and conservation of the adult skeleton. Endocr. Rev. 23(3), 279–302 (2002). https://doi.org/10.1210/edrv.23.3.0465

    Article  CAS  Google Scholar 

  85. T.T. Tsai, C.L. Tai, N.Y. Ho, P.L. Lai, T.S. Fu, C.C. Niu, L.H. Chen, W.J. Chen, Effects of strontium ranelate on spinal interbody fusion surgery in an osteoporotic rat model. PLoS ONE 12(1), e0167296 (2017). https://doi.org/10.1371/journal.pone.0167296

    Article  CAS  Google Scholar 

  86. C.H. Tonk, S.H. Shoushrah, P. Babczyk, B. El Khaldi-Hansen, M. Schulze, M. Herten, E. Tobiasch, Therapeutic treatments for osteoporosis—which combination of pills is the best among the bad? Int. J. Mol. Sci 23, 1393 (2022). https://doi.org/10.3390/ijms23031393

    Article  CAS  Google Scholar 

  87. B. Kołodziejska, N. Stępień, J. Kolmas, The influence of strontium on bone tissue metabolism and its application in osteoporosis treatment. Int. J. Mol. Sci. 22(12), 6564 (2021). https://doi.org/10.3390/ijms22126564

    Article  CAS  Google Scholar 

  88. E. Bonnelye, A. Chabadel, F. Saltel, P. Jurdic, Dual effect of strontium ranelate: stimulation of osteoblast differentiation and inhibition of osteoclast formation and resorption in vitro. Bone 42(1), 129–138 (2008). https://doi.org/10.1016/j.bone.2007.08.043

    Article  CAS  Google Scholar 

  89. M.R.M. Ibrahim, S. Singh, A.M. Merican, H.R.B. Raghavendran, M.R. Murali, S.V. Naveen, T. Kamarul, The efect of strontium ranelate on the healing of a fractured ulna with bone gap in rabbit. BMC Vet. Res. 12(1), 1–9 (2016). https://doi.org/10.1186/s12917-016-0724-6

    Article  CAS  Google Scholar 

  90. D.M. Smith, J.K. Simon, J.R. Baker Jr., Applications of nanotechnology for immunology. Nat. Rev. Immunol. 13(8), 592–605 (2013). https://doi.org/10.1038/nri3488

    Article  CAS  Google Scholar 

  91. M. Henriksen-Lacey, D. Christensen, V.W. Bramwell, T. Lindenstrøm, E.M. Agger, P. Andersen, Y. Perrie, Liposomal cationic charge and antigen adsorption are important properties for the efficient deposition of antigen at the injection site and ability of the vaccine to induce a CMI response. J. Control Release 145(2), 102–108 (2010). https://doi.org/10.1016/j.jconrel.2010.03.027

    Article  CAS  Google Scholar 

  92. C.A. Akdis, M. Akdis, Mechanisms of allergen-specifc immunotherapy. J. Allergy Clin. Immunol. 127(1), 18–27 (2011). https://doi.org/10.1016/j.jaci.2010.11.030

    Article  CAS  Google Scholar 

  93. B. Malissen, S. Tamoutounour, S. Henri, The origins and functions of dendritic cells and macrophages in the skin. Nat. Rev. Immunol. 14(6), 417–428 (2014). https://doi.org/10.1038/nri3683

    Article  CAS  Google Scholar 

  94. M. Garbani, W. Xia, C. Rhyner, M. Prati, A. Scheynius, B. Malissen, H. Engqvist, M. Maurer, R. Crameri, D. Terhorst, Allergen-loaded strontium-doped hydroxyapatite spheres improve allergen-specifc immunotherapy in mice. Allergy 72(4), 570–578 (2017). https://doi.org/10.1111/all.13041

    Article  CAS  Google Scholar 

  95. X. Wang, X. Li, A. Ito, Y. Sogo, Y. Watanabe, N. Tsuji, T. Ohno, Biodegradable metal ions doped mesoporous silica nanospheres stimulate anti-cancer Th1 immune response in vivo. ACS Appl. Mater. Interfaces 9(50), 43538–43544 (2017). https://doi.org/10.1021/acsami.7b16118

    Article  CAS  Google Scholar 

  96. M.K. Arifa, R. Ephraim, T. Rajamani, Recent advances in dental hard tissue remineralization: a review of the literature. Int. J. Clin. Pediatric Dent. 12(2), 139–144 (2019). https://doi.org/10.5005/jp-journals-10005-1603

    Article  Google Scholar 

  97. L.V. Jingbo, Z. Yaohui, L.V. Zhe, H. Xiqiang, W. Zhihong, Z. Xingbao, W. Bo, Strontium doped lanthanum manganite/manganese dioxide composite electrode for supercapacitor with enhanced rate capability. Electrochim. Acta 222, 1585–1591 (2016). https://doi.org/10.1016/j.electacta.2016.11.144

    Article  CAS  Google Scholar 

  98. S.D. Forssten, M. Bjorklund, A.C. Ouwehand, Streptococcus mutans, caries and simulation models. Nutrients 2, 290–298 (2010). https://doi.org/10.3390/nu2030290

    Article  Google Scholar 

  99. W. Kast, Principles of adsorption and adsorption processes. Chem. Eng. Process. Process Intensif. (1985). https://doi.org/10.1016/0255-2701(85)80013-1

    Article  Google Scholar 

  100. S. Kulshrestha, S. Khan, S. Hasan, M.E. Khan, L. Misba, A.U. Khan, Calcium fluoride nanoparticles induced suppression of Streptococcus mutans biofilm: an in vitro and in vivo approach. Appl. Microbiol. Biotechnol. 100(4), 1901–1914 (2016). https://doi.org/10.1007/s00253-015-7154-4

    Article  CAS  Google Scholar 

  101. S. Hesaraki, M. Karimi, N. Nezafati, The synergistic effects of SrF nanoparticles, YSZ nanoparticles, and poly-ε-l-lysin on physicomechanical, ion release, and antibacterial-cellular behavior of the flowable dental composites. Mater. Sci. Eng. C Mater. Biol. Appl. 109, 110592 (2020). https://doi.org/10.1016/j.msec.2019.110592

    Article  CAS  Google Scholar 

  102. E.V. Carvalho, D.M. de Paula, D.M.A. Neto, L.S. Costa, D.F. Dias, V.P. Feitosa, P.B.A. Fechine, Radiopacity and mechanical properties of dental adhesives with strontium hydroxyapatite nanofillers. J. Mech. Behav. Biomed. Mater. 101, 103447 (2020). https://doi.org/10.1016/j.jmbbm.2019.103447

    Article  CAS  Google Scholar 

  103. S. Narisawa, N. Fröhlander, J.L. Millán, Inactivation of two mouse alkaline phosphatase genes and establishment of a model of infantile hypophosphatasia. Dev Dyn 208(3), 432–446 (1997)

    Article  CAS  Google Scholar 

  104. A. Rajabnejadkeleshteri, A. Kamyar, M. Khakbiz, Z.L. Bakalani, H. Basiri, Synthesis and characterization of strontium fuor-hydroxyapatite nanoparticles for dental applications. Microchem J 153, 104485 (2020). https://doi.org/10.1016/j.microc.2019.104485

    Article  CAS  Google Scholar 

  105. K.T. Kim, M.Y. Eo, T. Nguyen, S.M. Kim, General review of titanium toxicity. Int. J. Implant. Dent. 5(1), 10 (2019). https://doi.org/10.1186/s40729-019-0162-x

    Article  Google Scholar 

  106. N. Babayevska, M. Woźniak-Budych, J. Litowczenko, B. Peplińska, M. Jarek, P. Florczak, G. Bartkowiak, B. Czarnecka, S. Jurga, Novel nanosystems to enhance biological activity of hydroxyapatite against dental caries. Mater. Sci. Eng.: C 124, 112062 (2021). https://doi.org/10.1016/j.msec.2021.112062

    Article  CAS  Google Scholar 

  107. Y. Chen, A. Gao, L. Bai, Y. Wang, X. Wang, X. Zhang, X. Huang, R. Hang, B. Tang, P.K. Chu, Antibacterial, osteogenic, and angiogenic activities of SrTiO3 nanotubes embedded with Ag2O nanoparticles. Mater. Sci. Eng. C Mater. Biol. Appl. 1(75), 1049–1058 (2017). https://doi.org/10.1016/j.msec.2017.03.014

    Article  CAS  Google Scholar 

  108. R.B. Shah, M. Patel, D.M. Maahs, V.N. Shah, Insulin delivery methods: past, present and future. Int. J. Pharm. Investig. 6(1), 1–9 (2016). https://doi.org/10.4103/2230-973X.176456

    Article  Google Scholar 

  109. A. Ahmad, I. Othman, A.Z. Md Zain, E.H. Chowdhury, Controlled release of insulin in blood from strontium-substituted carbonate apatite complexes. Curr. Drug. Deliv. 12(2), 210–222 (2015). https://doi.org/10.2174/1567201811666140708104031

    Article  CAS  Google Scholar 

  110. E. Grapengiesser, E. Gylfe, B. Hellman, Glucose-induced oscillations of cytoplasmic Ca2+ in the pancreatic β-cell. Biochem. Biophys. Res. Commun. 151(3), 1299–1304 (1988). https://doi.org/10.1016/s0006-291x(88)80503-5

    Article  CAS  Google Scholar 

  111. B. Hellman, E. Gylfe, P. Bergsten, E. Grapengiesser, A. Berts, Y.J. Liu, A. Tengholm, J. Westerlund, Oscillatory signaling and insulin release in human pancreatic beta-cells exposed to strontium. Endocrinology 138(8), 3161–3165 (1997). https://doi.org/10.1210/endo.138.8.5296

    Article  CAS  Google Scholar 

  112. C. Klec, G. Ziomek, M. Pichler, R. Malli, W.F. Graier, calcium signaling in ß-cell physiology and pathology: a revisit. Int. J. Mol. Sci. 20(24), 6110 (2019). https://doi.org/10.3390/ijms20246110

    Article  CAS  Google Scholar 

  113. C.B. Wollheim, G.W. Sharp, Regulation of insulin release by calcium. Physiol. Rev. 61(4), 914–973 (1981). https://doi.org/10.1152/physrev.1981.61.4.914

    Article  CAS  Google Scholar 

  114. B. Hellman, E. Gylfe, E. Grapengiesser, P.E. Lund, A. Berts, Cytoplasmic Ca2+ oscillations in pancreatic beta-cells. Biochim. Biophys. Acta 1113(3–4), 295–305 (1992). https://doi.org/10.1016/0304-4157(92)90003-s

    Article  CAS  Google Scholar 

  115. S. Priyadarsini, S. Mukherjee, S.N. Samikshya, A. Bhanja, S.K. Paikra, N. Nayak, M. Mishra, Dietary infection of Enterobacter ludwigii causes fat accumulation and resulted in the diabetes-like condition in Drosophila melanogaster. Microb. Pathog. 149, 104276 (2020). https://doi.org/10.1016/j.micpath.2020.104276

    Article  CAS  Google Scholar 

  116. T.A. Einhorn, The science of fracture healing. J. Orthop. Trauma 19(10), S4–S6 (2005). https://doi.org/10.1097/00005131-200511101-00002

    Article  Google Scholar 

  117. G.L. Cao, F.M. Tian, G.Y. Liu, H.P. Song, L.L. Yuan, L.D. Geng, M.J. Bei, Z.Y. Zheng, L. Zhang, Strontium ranelate combined with insulin is as beneficial as insulin alone in treatment of fracture healing in ovariectomized diabetic rats. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 24, 6525–6536 (2018). https://doi.org/10.12659/MSM.911573

    Article  CAS  Google Scholar 

  118. L.A. Scudeller, E. Mavropoulos, M.N. Tanaka, A.M. Costa, C.A.C. Braga, E.O. López, A. Mello, A.M. Rossi, Effects on insulin adsorption due to zinc and strontium substitution in hydroxyapatite. Mater. Sci. Eng. C Mater. Biol. Appl. 79, 802–811 (2017). https://doi.org/10.1016/j.msec.2017.05.061

    Article  CAS  Google Scholar 

  119. S. Chillistone, J.G. Hardman, Factors affecting drug absorption and distribution. Anaesth. Intensive Care Med. 18(7), 335–339 (2017). https://doi.org/10.1016/j.mpaic.2017.04.007

    Article  Google Scholar 

  120. M. Vertzoni, P. Augustijns, M. Grimm, M. Koziolek, G. Lemmens, N. Parrott, C. Pentafragka, C. Reppas, J. Rubbens, J. Van Den Αbeele, T. Vanuytsel, W. Weitschies, C.G. Wilson, Impact of regional differences along the gastrointestinal tract of healthy adults on oral drug absorption: an UNGAP review. Eur. J. Pharm. Sci. 134, 153–175 (2019). https://doi.org/10.1016/j.ejps.2019.04.013

    Article  CAS  Google Scholar 

  121. M. Filippousi, P.I. Siafaka, E.P. Amanatiadou, S.G. Nanaki, M. Nerantzaki, D.N. Bikiaris, I.S. Vizirianakis, G. Van Tendeloo, Modified chitosan coated mesoporous strontium hydroxyapatite nanorods as drug carriers. J. Mater. Chem. B 3(29), 5991–6000 (2015). https://doi.org/10.1039/C5TB00827A

    Article  CAS  Google Scholar 

  122. L. Temprom, S.L. Seet, P. Tippayawat, P. Suwanna, Bioactivity, cytotoxicity and antibacterial evaluation of undoped, Zn-doped, Sr-doped, and Zn/Sr-codoped hydroxyapatites synthesized by a sol-gel method. Chiang Mai J. Sci. 44(2), 630–639 (2017)

    CAS  Google Scholar 

  123. A.J. Samuel, A.S. Deepi, G. Srikesh, A.S. Nesaraj, One-pot synthesis and characterization of two-dimensional Tin-doped strontium oxide nanostructured electrode materials for electrochemical supercapacitor applications. Mater. Technol. (2020). https://doi.org/10.1080/10667857.2020.1819087

    Article  Google Scholar 

  124. M. Bidaghi, Y. Gogotsi, Capacitive energy storage in micro-scale devices: recent advances in design and fabrication of micro-supercapacitors. Energy Environ. Sci. 7, 867–884 (2014). https://doi.org/10.1039/C3EE43526A

    Article  Google Scholar 

  125. X. Lang, H. Mo, X. Hu, H. Tian, Supercapacitor performance of Perovskite La1-xSrxMnO3. Dalton Trans 46, 13720–13730 (2017). https://doi.org/10.1039/c7dt03134c

    Article  CAS  Google Scholar 

  126. B. Zhang, C. Yu, Z. Li, Enhancing the electrochemical properties of lacoo3 by Sr-doping, RGO-compounding with rational design for energy storage device. Nanoscale Res. Lett. 15, 184 (2020). https://doi.org/10.1186/s11671-020-03411-z

    Article  CAS  Google Scholar 

  127. Kavyashree, S. Parveen, S.S. Raut, M.K. Tiwari, B.R. Sankapal, S.N. Pandey, Flexible iron-doped Sr(OH)2 fibre wrapped tuberose for high-performance supercapacitor electrode. J. Alloys Compd. 781, 831–841 (2018). https://doi.org/10.1016/j.jallcom.2018.12.023

    Article  CAS  Google Scholar 

  128. R.K. Sharma, A.K. Tomar, G. Singh, Fabrication of Mo-doped strontium cobaltite perovskite hybrid supercapacitor cell with high energy density and excellent cycling life. Chem. Sus. Chem. 11(23), 4123–4130 (2018). https://doi.org/10.1002/cssc.201801869

    Article  CAS  Google Scholar 

  129. Y. Cao, P. Tang, S. Li, W. Qiu, High energy storage performance of Sr-doped lanthanum titanate flexible self-supporting film for all-solid-state supercapacitor application. J. Mater. Sci. 56, 13243–13258 (2021). https://doi.org/10.1007/s10853-021-06131-6

    Article  CAS  Google Scholar 

  130. B. Balamuralitharan, I.H. Cho, J.S. Bak, H. Kim, V2O5 nanorod electrode material for enhanced electrochemical properties by a facile hydrothermal method for supercapacitor applications. New J. Chem. 42, 11862–11868 (2018). https://doi.org/10.1039/C8NJ02377H

    Article  Google Scholar 

  131. S.H. Ji, N.R. Chodankar, D.H. Kim, Aqueous asymmetric supercapacitor based on RuO2-WO3 electrodes. Electrochim. Acta. 2019(325), 134879 (2019). https://doi.org/10.1016/j.electacta.2019.134879

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ikhazuagbe H. Ifijen.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ifijen, I.H., Maliki, M., Odiachi, I.J. et al. Performance of Metallic-Based Nanomaterials Doped with Strontium in Biomedical and Supercapacitor Electrodes: A Review. Biomedical Materials & Devices 1, 402–418 (2023). https://doi.org/10.1007/s44174-022-00006-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44174-022-00006-3

Keywords

Navigation