Skip to main content

Advertisement

Log in

Physiologically relevant platform for an advanced in vitro model of the vascular wall: focus on in situ fabrication and mechanical maturation

  • Original Research
  • Published:
In vitro models Aims and scope Submit manuscript

Abstract

The mechanical stimulation applied on engineered vascular constructs in perfusion bioreactors has been shown to be beneficial for their maturation. The level of mechanical stimulation applied on these constructs depends on the flow parameters of the circuit (e.g., fluid viscosity, flow rate, frequency, and pressure). As a group, these parameters are often overlooked in the literature, and they rarely meet the physiological values of the blood flow. For this reason, the level of circumferential stretching and shear stress that blood vessels experience in the human body are rarely reproduced. In this work, we reported the development of a physiologically relevant platform for (1) the in situ fabrication of vascular wall models based on collagen gel, and (2) their maturation under physiological levels of mechanical stimulation in a perfusion bioreactor (pulsatile flow rate of 100 mL/min, frequency of 1 Hz, pressure of 80–120 mmHg, and viscosity of 4 cP). One week of dynamic maturation oriented the seeded cells into the circumferential direction, increased the deposition of collagen and key elastin fiber-related proteins, and improved the mechanical properties in terms of tensile equilibrium elastic modulus (by 110%) and strength at break (by 63%) when compared to the static condition. In addition to the maturation study under selected physiologically relevant mechanical stimulation (such as adult, fetal, child, and hypertension conditions), the platform might also be used as a relevant in vitro testing system for new drugs or pro-active coating to medical devices (such as stents, endografts, and vascular prostheses) expected to trigger specific mechanisms or activities in vascular cells composing the arterial wall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Loy C, Meghezi S, Levesque L, et al. A planar model of the vessel wall from cellularized-collagen scaffolds: focus on cell-matrix interactions in mono-, bi- and tri-culture models. Biomaterials Science. 2017;5:153–62.

    Article  CAS  Google Scholar 

  2. Ishibashi K, Matsuda T. Reconstruction of a hybrid vascular graft hierarchically layered with three cell types. ASAIO journal (American Society for Artificial Internal Organs: 1992). 1994;40:M284-290.

    Article  CAS  Google Scholar 

  3. Boland ED, Matthews JA, Pawlowski KJ, et al. Electrospinning collagen and elastin: preliminary vascular tissue engineering. Front Biosci. 2004;9:e32.

    Article  Google Scholar 

  4. González-Pérez M, Camasão DB, Mantovani D, et al. Biocasting of an elastin-like recombinamer and collagen bi-layered model of the tunica adventitia and external elastic lamina of the vascular wall. Biomaterials Science. 2021;9:3860–74.

    Article  PubMed  Google Scholar 

  5. Tuttolomondo MV, Foglia ML and Manuel J. Approaches for improving the mechanical properties of collagen biomaterials. Advances in Physicochemical Properties of Biopolymers (Part 2) 2017: 354.

  6. Mathers CD, Loncar D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS medicine. 2006;3:e442.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hoskins PR, Lawford PV, Doyle BJ. Cardiovascular biomechanics. Switzerland: Springer; 2017.

    Book  Google Scholar 

  8. Fung Y-c. Biomechanics: mechanical properties of living tissues. 2nd ed. New York: Springer Science & Business Media; 2013.

    Google Scholar 

  9. Boselli F, Freund JB, Vermot J. Blood flow mechanics in cardiovascular development. Cell Mol Life Sci. 2015;72:2545–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cheng JK, Wagenseil JE. Extracellular matrix and the mechanics of large artery development. Biomech Model Mechanobiol. 2012;11:1169–86.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Seliktar D, Black RA, Vito RP, et al. Dynamic mechanical conditioning of collagen-gel blood vessel constructs induces remodeling in vitro. Ann Biomed Eng. 2000;28:351–62.

    Article  CAS  PubMed  Google Scholar 

  12. Bono N, Pezzoli D, Levesque L, et al. Unraveling the role of mechanical stimulation on smooth muscle cells: a comparative study between 2D and 3D models. Biotechnol Bioeng. 2016;113:2254–63.

    Article  CAS  PubMed  Google Scholar 

  13. Lu D, Kassab GS. Role of shear stress and stretch in vascular mechanobiology. J R Soc Interface. 2011;8:1379–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Narita Y, Hata K-I, Kagami H, et al. Novel pulse duplicating bioreactor system for tissue-engineered vascular construct. Tissue Eng. 2004;10:1224–33.

    Article  CAS  PubMed  Google Scholar 

  15. Song L, Zhou Q, Duan P, et al. Successful development of small diameter tissue-engineering vascular vessels by our novel integrally designed pulsatile perfusion-based bioreactor. PloS one 2012; 7.

  16. Visconti R, Mironov V, Kasyanov VA, et al. Cardiovascular tissue engineering I. Perfusion bioreactors: a review. Journal of long-term effects of medical implants 2006; 16.

  17. Bono N, Meghezi S, Soncini M, et al. A dual-mode bioreactor system for tissue engineered vascular models. Ann Biomed Eng. 2017;45:1496–510.

    Article  CAS  PubMed  Google Scholar 

  18. Loy C, Pezzoli D, Candiani G, et al. A cost-effective culture system for the in vitro assembly, maturation, and stimulation of advanced multilayered multiculture tubular tissue models. Biotechnol J. 2018;13:1700359.

    Article  CAS  Google Scholar 

  19. Rajan N, Habermehl J, Cote M-F, et al. Preparation of ready-to-use, storable and reconstituted type I collagen from rat tail tendon for tissue engineering applications. Nat Protocols. 2007;1:2753–8. https://doi.org/10.1038/nprot.2006.430.

    Article  CAS  Google Scholar 

  20. Zhu S, Yuan Q, Yin T, et al. Self-assembly of collagen-based biomaterials: preparation, characterizations and biomedical applications. Journal of Materials Chemistry B. 2018;6:2650–76.

    Article  CAS  PubMed  Google Scholar 

  21. Achilli M, Mantovani D. Tailoring mechanical properties of collagen-based scaffolds for vascular tissue engineering: the effects of pH, temperature and ionic strength on gelation. Polymers. 2010;2:664–80.

    Article  CAS  Google Scholar 

  22. Tiedemann K, Bätge B, Müller PK, et al. Interactions of fibrillin-1 with heparin/heparan sulfate, implications for microfibrillar assembly. J Biol Chem. 2001;276:36035–42.

    Article  CAS  PubMed  Google Scholar 

  23. Kumra H, Nelea V, Hakami H, et al. Fibulin-4 exerts a dual role in LTBP-4L–mediated matrix assembly and function. Proc Natl Acad Sci. 2019;116:20428–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. El-Hallous E, Sasaki T, Hubmacher D, et al. Fibrillin-1 interactions with fibulins depend on the first hybrid domain and provide an adaptor function to tropoelastin. J Biol Chem. 2007;282:8935–46.

    Article  CAS  PubMed  Google Scholar 

  25. Rueden CT, Schindelin J, Hiner MC, et al. Image J2: ImageJ for the next generation of scientific image data. BMC Bioinformatics. 2017;18:1–26.

    Article  Google Scholar 

  26. Chen Y, Yu Q, Xu C-B. A convenient method for quantifying collagen fibers in atherosclerotic lesions by ImageJ software. Int J Clin Exp Med. 2017;10:14904–10.

    Google Scholar 

  27. Camasão D, Mantovani D. The mechanical characterization of blood vessels and their substitutes in the continuous quest for physiological-relevant performances. A critical review Materials Today Bio. 2021;10:100106.

    Article  PubMed  CAS  Google Scholar 

  28. Meghezi S, Couet F, Chevallier P, et al. Effects of a pseudophysiological environment on the elastic and viscoelastic properties of collagen gels. International Journal of Biomaterials 2012; 2012: Article ID 319290.

  29. Camasão DB, Pérez MG, Palladino S, et al. Elastin-like recombinamers in collagen-based tubular gels improve cell-mediated remodeling and viscoelastic properties. Biomaterials Science 2020.

  30. Camasão DB, Pezzoli D, Loy C, et al. Increasing cell seeding density improves elastin expression and mechanical properties in collagen gel-based scaffolds cellularized with smooth muscle cells. Biotechnol J. 2018;14:1700768.

    Article  CAS  Google Scholar 

  31. Papaioannou TG, Stefanadis C. Vascular wall shear stress: basic principles and methods. Hellenic J Cardiol. 2005;46:9–15.

    PubMed  Google Scholar 

  32. Blackman BR, Garcı´ a-Carden˜ a G, Gimbrone MA Jr. A new in vitro model to evaluate differential responses of endothelial cells to simulated arterial shear stress waveforms. J Biomech Eng. 2002;124:397–407.

    Article  PubMed  Google Scholar 

  33. Dancu MB, Berardi DE, Heuvel JPV, et al. Atherogenic endothelial cell eNOS and ET-1 responses to asynchronous hemodynamics are mitigated by conjugated linoleic acid. Ann Biomed Eng. 2007;35:1111–9.

    Article  PubMed  Google Scholar 

  34. Qiu Y, Tarbell JM. Interaction between wall shear stress and circumferential strain affects endothelial cell biochemical production. J Vasc Res. 2000;37:147–57.

    Article  CAS  PubMed  Google Scholar 

  35. Tardy Y, Resnick N, Nagel T, et al. Shear stress gradients remodel endothelial monolayers in vitro via a cell proliferation-migration-loss cycle. Arterioscler Thromb Vasc Biol. 1997;17:3102–6.

    Article  CAS  PubMed  Google Scholar 

  36. Rouleau L, Rossi J, Leask RL. Concentration and time effects of dextran exposure on endothelial cell viability, attachment, and inflammatory marker expression in vitro. Ann Biomed Eng. 2010;38:1451–62.

    Article  PubMed  Google Scholar 

  37. Trudel J, Massia S. Assessment of the cytotoxicity of photocrosslinked dextran and hyaluronan-based hydrogels to vascular smooth muscle cells. Biomaterials. 2002;23:3299–307.

    Article  CAS  PubMed  Google Scholar 

  38. de Jonge E, Levi M. Effects of different plasma substitutes on blood coagulation: a comparative review. Crit Care Med. 2001;29:1261–7.

    Article  PubMed  Google Scholar 

  39. Wade CE, Grady J, Kramer GC. Efficacy of hypertonic saline dextran fluid resuscitation for patients with hypotension from penetrating trauma. J Trauma Acute Care Surg. 2003;54:S144–8.

    CAS  Google Scholar 

  40. Letcher RL, Chien S, Pickering TG, et al. Direct relationship between blood pressure and blood viscosity in normal and hypertensive subjects: role of fibrinogen and concentration. Am J Med. 1981;70:1195–202.

    Article  CAS  PubMed  Google Scholar 

  41. Massai D, Cerino G, Gallo D, et al. Bioreactors as engineering support to treat cardiac muscle and vascular disease. Journal of healthcare engineering. 2013;4:329–70.

    Article  PubMed  Google Scholar 

  42. Song L, Zhou Q, Duan P, et al. Successful development of small diameter tissue-engineering vascular vessels by our novel integrally designed pulsatile perfusion-based bioreactor. PLoS One. 2012;7:e42569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Buttafoco L, Engbers-Buijtenhuijs P, Poot AA, et al. Physical characterization of vascular grafts cultured in a bioreactor. Biomaterials. 2006;27:2380–9.

    Article  CAS  PubMed  Google Scholar 

  44. Schulte J, Friedrich A, Hollweck T, et al. A novel seeding and conditioning bioreactor for vascular tissue engineering. Processes. 2014;2:526–47.

    Article  CAS  Google Scholar 

  45. Arrigoni C, Chittò A, Mantero S, et al. Rotating versus perfusion bioreactor for the culture of engineered vascular constructs based on hyaluronic acid. Biotechnol Bioeng. 2008;100:988–97.

    Article  CAS  PubMed  Google Scholar 

  46. Syedain ZH, Meier LA, Bjork JW, et al. Implantable arterial grafts from human fibroblasts and fibrin using a multi-graft pulsed flow-stretch bioreactor with noninvasive strength monitoring. Biomaterials. 2011;32:714–22.

    Article  CAS  PubMed  Google Scholar 

  47. Stock UA, Vacanti JP. Cardiovascular physiology during fetal development and implications for tissue engineering. Tissue Eng. 2001;7:1–7.

    Article  CAS  PubMed  Google Scholar 

  48. Cheema U, Rong Z, Kirresh O, et al. Oxygen diffusion through collagen scaffolds at defined densities: implications for cell survival in tissue models. J Tissue Eng Regen Med. 2012;6:77–84.

    Article  CAS  PubMed  Google Scholar 

  49. Loy C, Lainé A, Mantovani D. Rotation-based technique for the rapid densification of tubular collagen gel scaffolds. Biotechnol J. 2016;11:1673–9.

    Article  CAS  PubMed  Google Scholar 

  50. Li Y-SJ, Haga JH, Chien S. Molecular basis of the effects of shear stress on vascular endothelial cells. J biomech. 2005;38:1949–71.

    Article  PubMed  Google Scholar 

  51. Urbich C, Walter DH, Zeiher AM, et al. Laminar shear stress upregulates integrin expression: role in endothelial cell adhesion and apoptosis. Circ Res. 2000;87:683–9.

    Article  CAS  PubMed  Google Scholar 

  52. Huang AH and Niklason LE. Engineering biological-based vascular grafts using a pulsatile bioreactor. JoVE (Journal of Visualized Experiments) 2011: e2646.

  53. Durante W, Liao L, Reyna SV, et al. Physiological cyclic stretch directs L-arginine transport and metabolism to collagen synthesis in vascular smooth muscle. FASEB J. 2000;14:1775–83.

    Article  CAS  PubMed  Google Scholar 

  54. Kim B-S, Nikolovski J, Bonadio J, et al. Cyclic mechanical strain regulates the development of engineered smooth muscle tissue. Nat Biotechnol. 1999;17:979–83.

    Article  CAS  PubMed  Google Scholar 

  55. Garanich JS, Pahakis M, Tarbell JM. Shear stress inhibits smooth muscle cell migration via nitric oxide-mediated downregulation of matrix metalloproteinase-2 activity. American Journal of Physiology-Heart and Circulatory Physiology. 2005;288:H2244–52.

    Article  CAS  PubMed  Google Scholar 

  56. Schad JF, Meltzer KR, Hicks MR, et al. Cyclic strain upregulates VEGF and attenuates proliferation of vascular smooth muscle cells. Vascular cell. 2011;3:1–10.

    Article  CAS  Google Scholar 

  57. Morrow D, Sweeney C, Birney YA, et al. Cyclic strain inhibits Notch receptor signaling in vascular smooth muscle cells in vitro. Circ Res. 2005;96:567–75.

    Article  CAS  PubMed  Google Scholar 

  58. Fernandez P, Bausch AR. The compaction of gels by cells: a case of collective mechanical activity. Integr Biol. 2009;1:252–9.

    Article  CAS  Google Scholar 

  59. Jeong SI, Kim SY, Cho SK, et al. Tissue-engineered vascular grafts composed of marine collagen and PLGA fibers using pulsatile perfusion bioreactors. Biomaterials. 2007;28:1115–22.

    Article  CAS  PubMed  Google Scholar 

  60. Wagenseil JE, Mecham RP. New insights into elastic fiber assembly. Birth Defects Res C Embryo Today. 2007;81:229–40.

    Article  CAS  PubMed  Google Scholar 

  61. Thurmond F, Trotter J. Morphology and biomechanics of the microfibrillar network of sea cucumber dermis. J Exp Biol. 1996;199:1817–28.

    Article  CAS  PubMed  Google Scholar 

  62. Sherratt MJ, Baldock C, Haston JL, et al. Fibrillin microfibrils are stiff reinforcing fibres in compliant tissues. J Mol Biol. 2003;332:183–93.

    Article  CAS  PubMed  Google Scholar 

  63. Patel A, Fine B, Sandig M, et al. Elastin biosynthesis: the missing link in tissue-engineered blood vessels. Cardiovasc Res. 2006;71:40–9.

    Article  CAS  PubMed  Google Scholar 

  64. Noda K, Dabovic B, Takagi K, et al. Latent TGF-β binding protein 4 promotes elastic fiber assembly by interacting with fibulin-5. Proc Natl Acad Sci. 2013;110:2852–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Schutte SC, Chen Z, Brockbank KG, et al. Cyclic strain improves strength and function of a collagen-based tissue-engineered vascular media. Tissue Eng Part A. 2010;16:3149–57.

    Article  CAS  PubMed  Google Scholar 

  66. van Haaften EE, Wissing TB, Rutten MC, et al. Decoupling the effect of shear stress and stretch on tissue growth and remodeling in a vascular graft. Tissue Eng Part C Methods. 2018;24:418–29.

    Article  PubMed  CAS  Google Scholar 

  67. Stekelenburg M, Rutten MC, Snoeckx LH, et al. Dynamic straining combined with fibrin gel cell seeding improves strength of tissue-engineered small-diameter vascular grafts. Tissue Eng Part A. 2009;15:1081–9.

    Article  CAS  PubMed  Google Scholar 

  68. Pezzoli D, Di Paolo J, Kumra H, et al. Fibronectin promotes elastin deposition, elasticity and mechanical strength in cellularised collagen-based scaffolds. Biomaterials. 2018;180:130–42.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Francesco Copes, PhD, for his precious help and guidance all along this research. This work was partially supported by the Natural Sciences and Engineering Research Council of Canada (NSERC to DM and DPR), the NSERC Create Program in Regenerative Medicine, the Canadian Foundation for the Innovation, and the Fonds de Recherche du Québec (Nature et Technologies, and Santé to DM and DPR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Mantovani.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Camasão, D.B., Li, L., Drouin, B. et al. Physiologically relevant platform for an advanced in vitro model of the vascular wall: focus on in situ fabrication and mechanical maturation. In vitro models 1, 179–195 (2022). https://doi.org/10.1007/s44164-022-00012-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44164-022-00012-1

Keywords

Navigation