Abstract
Balloon expandable coronary stenting has revolutionized the field of interventional cardiology as a potential, minimally invasive modality for treating coronary artery disease. Even though stenting is successful compared to angioplasty (that leaves no stent in place), still there are many associated clinical complications. Bare metal stents are associated with in-stent restenosis caused mostly by neointimal hyperplasia, whereas success of drug-eluting stents comes at the expense of late-stent thrombosis and neoatherosclerosis. Even though innovative and promising, clinical trials with bioabsorbable stents reported thrombosis and a rapid pace of degradation without performing scaffolding action in several instances. It should be noted that a vast majority of these stents are based on a metallic platform which still holds the potential to mitigate major cardiovascular events and reduced economic burden to patients, alongside continuous improvement in stent technology and antiplatelet regimes. Hence, a systematic review was conducted following PRISMA guidelines to assess the clinically relevant material properties for a metallic stent material. From a materials perspective, the major causes identified for clinical failure of stents are inferior mechanical properties and blood-material interaction–related complications at the stent surface. In addition to these, the stent material should possess increased radiopacity for improved visibility and lower magnetic susceptibility values for artefact reduction. Moreover, the review provides an overview of future scope of percutaneous coronary interventional strategy. Most importantly, this review highlights the need for an interdisciplinary approach by clinicians, biomaterial scientists, and interventional cardiologists to collaborate in mitigating the impediments associated with cardiovascular stents for alleviating sufferings of millions of people worldwide.
Graphical abstract
Similar content being viewed by others
Data availability statement
The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.
Change history
14 February 2022
A Correction to this paper has been published: https://doi.org/10.1007/s44164-022-00010-3
References
World Health Organization. World Health Statistics 2016: monitoring health for the SDGs, 2016. http://www.who.int/gho/publications/world_health_statistics/2016/en/. Accessed 4 Apr 2020.
Benjamin Emelia J, Muntner P, Alonso A, Bittencourt Marcio S, Callaway Clifton W, Carson April P, Chamberlain Alanna M, Chang Alexander R, Cheng S, Das Sandeep R, Delling Francesca N, Djousse L, Elkind Mitchell SV, Ferguson Jane F, Fornage M, Jordan Lori C, Khan Sadiya S, Kissela Brett M, Knutson Kristen L, Kwan Tak W, Lackland Daniel T, Lewis Tené T, Lichtman Judith H, Longenecker Chris T, Loop Matthew S, Lutsey Pamela L, Martin Seth S, Matsushita K, Moran Andrew E, Mussolino Michael E, O’Flaherty M, Pandey A, Perak Amanda M, Rosamond Wayne D, Roth Gregory A, Sampson Uchechukwu KA, Satou Gary M, Schroeder Emily B, Shah Svati H, Spartano Nicole L, Stokes A, Tirschwell David L, Tsao Connie W, Turakhia Mintu P, VanWagner Lisa B, Wilkins John T, Wong Sally S, Virani Salim S. Heart disease and stroke statistics—2019 update: a report from the American Heart Association. Circulation. 2019;139(10):e56–528.
Gruentzig AR, Meier B. Percutaneous transluminal coronary angioplasty. The first five years and the future. Int J Cardiol. 1983;2(3):319–23.
Lincoff AM, Popma JJ, Ellis SG, Hacker JA, Topol EJ. Abrupt vessel closure complicating coronary angioplasty: clinical, angiographic and therapeutic profile. J Am Coll Cardiol. 1992;19(5):926–35.
Sigwart U. The stent story: how it all started…. Eur Heart J. 2017;38(28):2171–2.
Stoeckel D, Pelton A, Duerig T. Self-expanding nitinol stents: material and design considerations. Eur Radiol. 2004;14(2):292–301.
Zidar DA. Newer-generation drug-eluting stents: heal thyself. Sci Transl Med. 2013;5(211):211ec190.
Ong ATL, Serruys PW. Technology Insight: an overview of research in drug-eluting stents. Nat Clin Pract Cardiovasc Med. 2005;2(12):647–58.
Hermawan H, Dubé D, Mantovani D. Developments in metallic biodegradable stents. Acta Biomater. 2010;6(5):1693–7.
Hermawan H, Purnama A, Dube D, Couet J, Mantovani D. Fe–Mn alloys for metallic biodegradable stents: degradation and cell viability studies. Acta Biomater. 2010;6(5):1852–60.
Bowen PK, Shearier ER, Zhao S, Guillory Ii RJ, Zhao F, Goldman J, Drelich JW. Biodegradable metals for cardiovascular stents: from clinical concerns to recent Zn-alloys. Adv Healthc Mater. 2016;5(10):1121–40.
Bangalore S. The elusive late benefit of biodegradable polymer drug-eluting stents. Circulation. 2019;139(3):334–6.
Hassan AKM, Bergheanu SC, Stijnen T, van der Hoeven BL, Snoep JD, Plevier JWM, Schalij MJ, Wouter Jukema J. Late stent malapposition risk is higher after drug-eluting stent compared with bare-metal stent implantation and associates with late stent thrombosis. Eur Heart J. 2009;31(10):1172–80.
Gunn J, Cumberland D. Does stent design influence restenosis? Eur Heart J. 1999;20(14):1009–13.
Baumann F, Fust J, Peter Engelberger R, Hügel U, Do D-D, Willenberg T, Baumgartner I, Diehm N. Early recoil after balloon angioplasty of tibial artery obstructions in patients with critical limb ischemia. J Endovasc Ther. 2014;21(1):44–51.
Bi Y, Wu T, Jiang X, Kislauskis E, Laham R. Abstract 16528: Structural instability, the potential cause for current BVS scaffold’s failure. Circulation. 2018;138(Suppl_1):A16528.
Bønaa KH, Mannsverk J, Wiseth R, Aaberge L, Myreng Y, Nygård O, Nilsen DW, Kløw N-E, Uchto M, Trovik T, Bendz B, Stavnes S, Bjørnerheim R, Larsen A-I, Slette M, Steigen T, Jakobsen OJ, Bleie Ø, Fossum E, Hanssen TA, Dahl-Eriksen Ø, Njølstad I, Rasmussen K, Wilsgaard T, Nordrehaug JE. Drug-eluting or bare-metal stents for coronary artery disease. N Engl J Med. 2016;375(13):1242–52.
Meier B. Interventional cardiology, where real life and science do not necessarily meet †. Eur Heart J. 2016;37(26):2014–9.
Torii S, Jinnouchi H, Sakamoto A, Kutyna M, Cornelissen A, Kuntz S, Guo L, Mori H, Harari E, Paek KH, Fernandez R, Chahal D, Romero ME, Kolodgie FD, Gupta A, Virmani R, Finn AV. Drug-eluting coronary stents: insights from preclinical and pathology studies. Nat Rev Cardiol. 2020;17(1):37–51.
Lee D-H, de la Torre Hernandez JM. The newest generation of drug-eluting stents and beyond. Eur Cardiol. 2018;13(1):54–9.
McMahon S, Bertollo N, Cearbhaill EDO, Salber J, Pierucci L, Duffy P, Dürig T, Bi V, Wang W. Bio-resorbable polymer stents: a review of material progress and prospects. Prog Polym Sci. 2018;83:79–96.
Zhang L-C, Chen L-Y. A review on biomedical titanium alloys: recent progress and prospect. Adv Eng Mater. 2019;21(4):1801215.
Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: the PRISMA statement. Ann Intern Med. 2009;151(4):264–9 W64.
Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JPA, Clarke M, Devereaux PJ, Kleijnen J, Moher D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ. 2009;339:b2700.
Torrado J, Buckley L, Durán A, Trujillo P, Toldo S, Valle Raleigh J, Abbate A, Biondi-Zoccai G, Guzmán LA. Restenosis, stent thrombosis, and bleeding complications: navigating between Scylla and Charybdis. J Am Coll Cardiol. 2018;71(15):1676–95.
Vishnu J, Manivasagam G. Perspectives on smart stents with sensors: from conventional permanent to novel bioabsorbable smart stent technologies. Med Devices Sensors. 2020;3(6):e10116.
Kan J, Ge Z, Zhang J-J, Liu Z-Z, Tian N-L, Ye F, Li S-J, Qian X-S, Yang S, Chen M-X, Rab T, Chen S-L. Incidence and clinical outcomes of stent fractures on the basis of 6,555 patients and 16,482 drug-eluting stents from 4 centers. JACC: Cardiovasc Interv. 2016;9(11):1115.
Chhatriwalla AK, Cam A, Unzek S, Bhatt DL, Raymond RE, Lincoff AM, Whitlow PL, Ellis SG, Tuzcu EM, Kapadia SR. Drug-eluting stent fracture and acute coronary syndrome. Cardiovasc Revasc Med. 2009;10(3):166–71.
Kosonen P, Vikman S, Jensen LO, Lassen JF, Harnek J, Olivecrona GK, Erglis A, Fossum E, Niemela M, Kervinen K, Ylitalo A, Pietila M, Aaroe J, Kellerth T, Saunamaki K, Thayssen P, Hellsten L, Thuesen L, Niemela K. Intravascular ultrasound assessed incomplete stent apposition and stent fracture in stent thrombosis after bare metal versus drug-eluting stent treatment the Nordic Intravascular Ultrasound Study (NIVUS). Int J Cardiol. 2013;168(2):1010–6.
Schillinger M, Minar E. Endovascular stent implantation for treatment of peripheral artery disease. Eur J Clin Invest. 2007;37(3):165–70.
Yin T-Y, Wang G-X, Zhang D-C, Du D-Y, Li Z-G, Luo L-L, Hou Y-B, Wang Y-Z, Zhao J-B. Endothelialization and in-stent restenosis on the surface of glycoprotein IIIa monoclonal antibody eluting stent. J Biomed Mater Res, Part A. 2012;100A(6):1398–406.
McFadden EP, Stabile E, Regar E, Cheneau E, Ong AT, Kinnaird T, Suddath WO, Weissman NJ, Torguson R, Kent KM, Pichard AD, Satler LF, Waksman R, Serruys PW. Late thrombosis in drug-eluting coronary stents after discontinuation of antiplatelet therapy. Lancet. 2004;364(9444):1519–21.
Pfisterer M, Brunner-La Rocca HP, Buser PT, Rickenbacher P, Hunziker P, Mueller C, Jeger R, Bader F, Osswald S, Kaiser C. Late clinical events after clopidogrel discontinuation may limit the benefit of drug-eluting stents: an observational study of drug-eluting versus bare-metal stents. J Am Coll Cardiol. 2006;48(12):2584–91.
Cook S, Wenaweser P, Togni M, Billinger M, Morger C, Seiler C, Vogel R, Hess O, Meier B, Windecker S. Incomplete stent apposition and very late stent thrombosis after drug-eluting stent implantation. Circulation. 2007;115(18):2426–34.
Philip F, Stewart S, Southard JA. Very late stent thrombosis with second generation drug eluting stents compared to bare metal stents: network meta-analysis of randomized primary percutaneous coronary intervention trials. Catheter Cardiovasc Interv. 2016;88(1):38–48.
Kastrati A, Mehilli J, Dirschinger J, Dotzer F, Schuhlen H, Neumann FJ, Fleckenstein M, Pfafferott C, Seyfarth M, Schomig A. Intracoronary stenting and angiographic results: strut thickness effect on restenosis outcome (ISAR-STEREO) trial. Circulation. 2001;103(23):2816–21.
Pache J, Kastrati A, Mehilli J, Schuhlen H, Dotzer F, Hausleiter J, Fleckenstein M, Neumann FJ, Sattelberger U, Schmitt C, Muller M, Dirschinger J, Schomig A. Intracoronary stenting and angiographic results: strut thickness effect on restenosis outcome (ISAR-STEREO-2) trial. J Am Coll Cardiol. 2003;41(8):1283–8.
Choudhry S, Balzer D, Murphy J, Nicolas R, Shahanavaz S. Percutaneous carotid artery access in infants < 3 months of age. Catheter Cardiovasc Interv. 2016;87(4):757–61.
Menown IB, Noad R, Garcia EJ, Meredith I. The platinum chromium element stent platform: from alloy, to design, to clinical practice. Adv Ther. 2010;27(3):129–41.
Attia MF, Brummel BR, Lex TR, Van Horn BA, Whitehead DC, Alexis F. Recent advances in polyesters for biomedical imaging. Adv Healthcare Mater. 2018;7(22):1800798.
Groover MP. Fundamentals of modern manufacturing: materials, processes, and systems. Wiley; 2010.
Clifford M, Simmons K, Shipway P. An introduction to mechanical engineering: Part 1. CRC Press; 2009.
Agrawal M, Hakeem A, Ahmed Z, Uretsky BF. Classification of mechanisms of strut malapposition after angiographically optimized stent implantation: an optical coherence tomography study. Catheter Cardiovasc Interv. 2017;90(2):225–32.
Mizuki T, Kubo T, Horimoto K, Matsusaka H, Ashihara T. Successful retrieval of an entrapped coronary stent with its delivery system by small balloon dilatation at the entrapped site: a case report. J Indian Coll Cardiol. 2015;5(1):67–70.
Ling AJ, Mwipatayi P, Gandhi T, Sieunarine K. Stenting for carotid artery stenosis: fractures, proposed etiology and the need for surveillance. J Vasc Surg. 2008;47(6):1220–6.
Halwani DO, Anderson PG, Brott BC, Anayiotos AS, Lemons JE. Clinical device-related article surface characterization of explanted endovascular stents: evidence of in vivo corrosion, Journal of biomedical materials research. Part B, Applied biomaterials. 2010;95(1):225–38.
Foin N, Alegria E, Sen S, Petraco R, Nijjer S, Di Mario C, Francis DP, Davies JE. Importance of knowing stent design threshold diameters and post-dilatation capacities to optimise stent selection and prevent stent overexpansion/incomplete apposition during PCI. Int J Cardiol. 2013;166(3):755–8.
Mani G, Feldman MD, Patel D, Agrawal CM. Coronary stents: a materials perspective. Biomaterials. 2007;28(9):1689–710.
Lévesque J, Dubé D, Fiset M, Mantovani D. Materials and properties for coronary stents. Advanced Materials and Processes. 2004;162(9):45–48.
Maglione J, Bergersen L, Lock James E, McElhinney Doff B. Ultra-high-pressure balloon angioplasty for treatment of resistant stenoses within or adjacent to previously implanted pulmonary arterial stents. Circulation: Cardiovasc Interv. 2009;2(1):52–8.
Khalilimeybodi A, Alishzadeh Khoei A, Sharif-Kashani B. Future balloon-expandable stents: high or low-strength materials? Cardiovasc Eng Technol. 2020;11(2):188–204.
Craig CH, Friend CM, Edwards MR, Cornish LA, Gokcen NA. Mechanical properties and microstructure of platinum enhanced radiopaque stainless steel (PERSS) alloys. J Alloy Compd. 2003;361(1):187–99.
Köster R, Vieluf D, Kiehn M, Sommerauer M, Kähler J, Baldus S, Meinertz T, Hamm CW. Nickel and molybdenum contact allergies in patients with coronary in-stent restenosis. The Lancet. 2000;356(9245):1895–7.
Li J, Yang Y, Ren Y, Dong J, Yang K. Effect of cold deformation on corrosion fatigue behavior of nickel-free high nitrogen austenitic stainless steel for coronary stent application. J Mater Sci Technol. 2018;34(4):660–5.
Katada Y, Taguchi T. Nickel-Free High-Nitrogen Stainless Steel. In: Niinomi M, Narushima T, Nakai M, editors. Advances in metallic biomaterials: tissues, materials and biological reactions. Berlin, Heidelberg: Springer, Berlin Heidelberg; 2015. p. 125–56.
Bangalore S, Toklu B, Patel N, Feit F, Stone Gregg W. Newer-generation ultrathin strut drug-eluting stents versus older second-generation thicker strut drug-eluting stents for coronary artery disease. Circulation. 2018;138(20):2216–26.
van Bommel RJ, Lemmert ME, van Mieghem NM, van Geuns R-J, van Domburg RT, Daemen J. Occurrence and predictors of acute stent recoil—a comparison between the xience prime cobalt chromium stent and the promus premier platinum chromium stent. Catheter Cardiovasc Interv. 2018;91(3):E21–8.
Ringel RE, Gauvreau K, Moses H, Jenkins KJ. Coarctation of the Aorta Stent Trial (COAST): study design and rationale. Am Heart J. 2012;164(1):7–13.
Ewert P, Schubert S, Peters B, Abdul-Khaliq H, Nagdyman N, Lange PE. The CP stent–short, long, covered–for the treatment of aortic coarctation, stenosis of pulmonary arteries and caval veins, and Fontan anastomosis in children and adults: an evaluation of 60 stents in 53 patients. Heart. 2005;91(7):948–53.
Zheng Y, Xu X, Xu Z, Wang J, Cai H. Introduction of the biofunctions into traditional metallic biomaterials. In: Zheng Y, Xu X, Xu Z, Wang J, Cai H, editors. Metallic biomaterials. 2017. p. 31–57.
O’Brien B, Stinson J, Carroll W. Development of a new niobium-based alloy for vascular stent applications. J Mech Behav Biomed Mater. 2008;1(4):303–12.
Li HZ, Xu J. MRI compatible Nb-Ta-Zr alloys used for vascular stents: optimization for mechanical properties. J Mech Behav Biomed Mater. 2014;32:166–76.
Geetha M, Singh AK, Asokamani R, Gogia AK. Ti based biomaterials, the ultimate choice for orthopaedic implants – a review. Prog Mater Sci. 2009;54(3):397–425.
Aljihmani L, Alic L, Boudjemline Y, Hijazi ZM, Mansoor B, Serpedin E, Qaraqe K. Magnesium-based bioresorbable stent materials: review of reviews. J Bio- Tribo-Corros. 2019;5(1):26.
O’Brien B, Stinson J, Carroll W. Initial exploration of Ti-Ta, Ti-Ta-Ir and Ti-Ir alloys: candidate materials for coronary stents. Acta Biomater. 2008;4(5):1553–9.
Prima F, Sun F, Vermaut P, Gloriant T, Mantovani D, Jacques PJ. High performance beta titanium alloys as a new material perspective for cardiovascular applications. Mater Sci Forum. 2012;706–709:578–83.
Gordin DM, Sun F, Laillé D, Prima F, Gloriant T. How a new strain transformable titanium-based biomedical alloy can be designed for balloon expendable stents. Materialia. 2020;10:100638.
Bowen PK, Drelich A, Drelich J, Goldman J. Rates of in vivo (arterial) and in vitro biocorrosion for pure magnesium. J Biomed Mater Res, Part A. 2015;103(1):341–9.
Peuster M, Hesse C, Schloo T, Fink C, Beerbaum P, von Schnakenburg C. Long-term biocompatibility of a corrodible peripheral iron stent in the porcine descending aorta. Biomaterials. 2006;27(28):4955–62.
Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN. Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol. 2014;7(2):60–72.
Bowen PK, Drelich J, Goldman J. Zinc exhibits ideal physiological corrosion behavior for bioabsorbable stents. Adv Mater. 2013;25(18):2577–82.
Bukala J, Kwiatkowski P, Malachowski J. Numerical analysis of crimping and inflation process of balloon-expandable coronary stent using implicit solution. Int J Numer Methods Biomed Eng. 2017;33(12):e2890.
Martin D, Boyle FJ. Computational structural modelling of coronary stent deployment: a review. Comput Methods Biomech Biomed Engin. 2011;14(4):331–48.
Bukala J, Kwiatkowski P, Malachowski J. Numerical analysis of stent expansion process in coronary artery stenosis with the use of non-compliant balloon. Biocybern Biomed Eng. 2016;36(1):145–56.
Moravej M, Mantovani D. Biodegradable metals for cardiovascular stent application: interests and new opportunities. Int J Mol Sci. 2011;12(7):4250–70.
Yang K, Ren Y. Nickel-free austenitic stainless steels for medical applications. Sci Technol Adv Mater. 2010;11(1):014105.
Poncin P, Millet C, Chevy J, Proft J. Comparing and optimizing Co-Cr tubing for stent applications, Medical Device Materials II - Proceedings of the Materials and Processes for Medical Devices Conference 2004. 2005.
O’Brien BJ, Stinson JS, Larsen SR, Eppihimer MJ, Carroll WM. A platinum–chromium steel for cardiovascular stents. Biomaterials. 2010;31(14):3755–61.
Al-Mangour B. Coronary stents fracture: an engineering approach (review). Mater Sci Appl. 2013;04(10):606–21.
O’Brien BJ, Stinson JS, Boismier DA, Carroll WM. Characterization of an NbTaWZr alloy designed for magnetic resonance angiography compatible stents. Biomaterials. 2008;29(34):4540–5.
Li H-Z, Xu J. MRI compatible Nb–Ta–Zr alloys used for vascular stents: optimization for mechanical properties. J Mech Behav Biomed Mater. 2014;32:166–76.
O’Brien B, Stinson J, Carroll W. Initial exploration of Ti–Ta, Ti–Ta–Ir and Ti–Ir alloys: candidate materials for coronary stents. Acta Biomater. 2008;4(5):1553–9.
Niu J, Tang Z, Huang H, Pei J, Zhang H, Yuan G, Ding W. Research on a Zn-Cu alloy as a biodegradable material for potential vascular stents application. Mater Sci Eng, C. 2016;69:407–13.
Katarivas Levy G, Goldman J, Aghion E. The prospects of zinc as a structural material for biodegradable implants—a review paper. Metals. 2017;7(10):402.
Halwani DO, Anderson PG, Brott BC, Anayiotos AS, Lemons JE. The role of vascular calcification in inducing fatigue and fracture of coronary stents, Journal of biomedical materials research. Part B, Applied biomaterials. 2012;100(1):292–304.
Kaushish JP. Manufacturing processes. PHI Learning; 2010.
Sweeney CA, O’Brien B, Dunne FPE, McHugh PE, Leen SB. Micro-scale testing and micromechanical modelling for high cycle fatigue of CoCr stent material. J Mech Behav Biomed Mater. 2015;46:244–60.
Sweeney CA, O’Brien B, McHugh PE, Leen SB. Experimental characterisation for micromechanical modelling of CoCr stent fatigue. Biomaterials. 2014;35(1):36–48.
Sweeney CA, O’Brien B, Dunne FPE, McHugh PE, Leen SB. Strain-gradient modelling of grain size effects on fatigue of CoCr alloy. Acta Mater. 2014;78:341–53.
Khatibi G, Lederer M, Betzwar Kotas A, Frotscher M, Krause A, Poehlmann S. High-cycle fatigue behavior of thin-walled CoCr tubes. Int J Fatigue. 2015;80:103–12.
Azaouzi M, Makradi A, Petit J, Belouettar S, Polit O. On the numerical investigation of cardiovascular balloon-expandable stent using finite element method. Comput Mater Sci. 2013;79:326–35.
Kapnisis K, Constantinides G, Georgiou H, Cristea D, Gabor C, Munteanu D, Brott B, Anderson P, Lemons J, Anayiotos A. Multi-scale mechanical investigation of stainless steel and cobalt-chromium stents. J Mech Behav Biomed Mater. 2014;40:240–51.
Li J, Luo Q, Xie Z, Li Y, Zeng Y. Fatigue life analysis and experimental verification of coronary stent. Heart Vessels. 2010;25(4):333–7.
Gu XN, Zhou WR, Zheng YF, Cheng Y, Wei SC, Zhong SP, Xi TF, Chen LJ. Corrosion fatigue behaviors of two biomedical Mg alloys – AZ91D and WE43 – in simulated body fluid. Acta Biomater. 2010;6(12):4605–13.
Hermawan H. Updates on the research and development of absorbable metals for biomedical applications. Prog Biomater. 2018;7(2):93–110.
Xie D, Leng YX, Jing FJ, Huang N. A brief review of bio-tribology in cardiovascular devices. Biosurf Biotribol. 2015;1(4):249–62.
Jaffer IH, Fredenburgh JC, Hirsh J, Weitz JI. Medical device-induced thrombosis: what causes it and how can we prevent it? J Thromb Haemost. 2015;13(S1):S72–81.
Mackman N. Triggers, targets and treatments for thrombosis. Nature. 2008;451(7181):914–8.
Varga-Szabo D, Pleines I, Nieswandt B. Cell adhesion mechanisms in platelets. Arterioscler Thromb Vasc Biol. 2008;28(3):403–12.
Reininger AJ. Function of von Willebrand factor in haemostasis and thrombosis. Haemophilia. 2008;14(s5):11–26.
Ruggeri ZM. Platelets in atherothrombosis. Nat Med. 2002;8(11):1227–34.
Bartlet K, Movafaghi S, Kota A, Popat KC. Superhemophobic titania nanotube array surfaces for blood contacting medical devices. RSC Adv. 2017;7(56):35466–76.
Kafkas N, Dragasis S. Current knowledge on very late stent thrombosis. Cont Cardiol Educ. 2018;4(1):40–4.
Varenhorst C, Lindholm M, Sarno G, Olivecrona G, Jensen U, Nilsson J, Carlsson J, James S, Lagerqvist B. Stent thrombosis rates the first year and beyond with new- and old-generation drug-eluting stents compared to bare metal stents. Clin Res Cardiol. 2018;107(9):816–23.
Claessen BE, Henriques JPS, Jaffer FA, Mehran R, Piek JJ, Dangas GD. Stent thrombosis: a clinical perspective. JACC: Cardiovasc Interv. 2014;7(10):1081–92.
Seyfert UT, Biehl V, Schenk J. In vitro hemocompatibility testing of biomaterials according to the ISO 10993–4. Biomol Eng. 2002;19(2):91–6.
Weber M, Steinle H, Golombek S, Hann L, Schlensak C, Wendel HP, Avci-Adali M. Blood-contacting biomaterials: in vitro evaluation of the hemocompatibility, Front Bioeng. Biotechnol. 2018;6:99–99.
van der Meijden PEJ, Heemskerk JWM. Platelet biology and functions: new concepts and clinical perspectives. Nat Rev Cardiol. 2019;16(3):166–79.
Marx Steven O, Totary-Jain H, Marks Andrew R. Vascular smooth muscle cell proliferation in restenosis. Circulation: Cardiovasc Interv. 2011;4(1):104–11.
Meyers SR, Hamilton PT, Walsh EB, Kenan DJ, Grinstaff MW. Endothelialization of titanium surfaces. Adv Mater. 2007;19(18):2492–8.
Byrne RA, Serruys PW, Baumbach A, Escaned J, Fajadet J, James S, Joner M, Oktay S, Jüni P, Kastrati A, Sianos G, Stefanini GG, Wijns W, Windecker S. Report of a European Society of Cardiology-European Association of Percutaneous Cardiovascular Interventions task force on the evaluation of coronary stents in Europe: executive summary. Eur Heart J. 2015;36(38):2608–20.
Gailani D, Renne T. Intrinsic pathway of coagulation and arterial thrombosis. Arterioscler Thromb Vasc Biol. 2007;27(12):2507–13.
Ankrum J. Cell therapies can bring insult to injury. Sci Transl Med. 2020;12(532):eabb0792.
Mackman N, Bergmeier W, Stouffer GA, Weitz JI. Therapeutic strategies for thrombosis: new targets and approaches. Nat Rev Drug Discov. 2020;19(5):333–52.
Soike T, Streff AK, Guan C, Ortega R, Tantawy M, Pino C, Shastri VP. Engineering a material surface for drug delivery and imaging using layer-by-layer assembly of functionalized nanoparticles. Adv Mater. 2010;22(12):1392–7.
Żeliszewska P, Sadowska M, Morga M, Adamczyk Z. Mechanism of fibrinogen /microparticle complex deposition on solid substrates: role of pH. Colloids Surf B: Biointerfaces. 2019;184:110424.
Castellanos MI, Mas-Moruno C, Grau A, Serra-Picamal X, Trepat X, Albericio F, Joner M, Gil FJ, Ginebra MP, Manero JM, Pegueroles M. Functionalization of CoCr surfaces with cell adhesive peptides to promote HUVECs adhesion and proliferation. Appl Surf Sci. 2017;393:82–92.
Windecker S, Mayer I, De Pasquale G, Maier W, Dirsch O, De Groot P, Wu Y-P, Noll G, Leskosek B, Meier B, Hess Otto M. Stent coating with titanium-nitride-oxide for reduction of neointimal hyperplasia. Circulation. 2001;104(8):928–33.
Hasebe T, Ishimaru T, Kamijo A, Yoshimoto Y, Yoshimura T, Yohena S, Kodama H, Hotta A, Takahashi K, Suzuki T. Effects of surface roughness on anti-thrombogenicity of diamond-like carbon films. Diam Relat Mater. 2007;16(4):1343–8.
Linneweber J, Dohmen PM, Kertzscher U, Affeld K, Nose Y, Konertz W. The effect of surface roughness on activation of the coagulation system and platelet adhesion in rotary blood pumps. Artif Organs. 2007;31(5):345–51.
Schieber R, Lasserre F, Hans M, Fernández-Yagüe M, Díaz-Ricart M, Escolar G, Ginebra M-P, Mücklich F, Pegueroles M. Direct laser interference patterning of CoCr alloy surfaces to control endothelial cell and platelet response for cardiovascular applications. Adv Healthcare Mater. 2017;6(19):1700327.
Choudhary S, Haberstroh KM, Webster TJ. Enhanced functions of vascular cells on nanostructured Ti for improved stent applications. Tissue Eng. 2007;13(7):1421–30.
Shih C-C, Shih C-M, Su Y-Y, Su LHJ, Chang M-S, Lin S-J. Effect of surface oxide properties on corrosion resistance of 316L stainless steel for biomedical applications. Corros Sci. 2004;46(2):427–41.
Milleret V, Ziogas A, Buzzi S, Heuberger R, Zucker A, Ehrbar M. Effect of oxide layer modification of CoCr stent alloys on blood activation and endothelial behavior. J Biomed Mater Res B Appl Biomater. 2015;103(3):629–40.
Sharma CP. Blood-compatible materials: a perspective. J Biomater Appl. 2001;15(4):359–81.
Sousa JE, Serruys Patrick W, Costa Marco A. New frontiers in cardiology. Circulation. 2003;107(17):2274–9.
Ren L, Xu L, Feng J, Zhang Y, Yang K. In vitro study of role of trace amount of Cu release from Cu-bearing stainless steel targeting for reduction of in-stent restenosis. J Mater Sci - Mater Med. 2012;23(5):1235–45.
Ren X, Feng Y, Guo J, Wang H, Li Q, Yang J, Hao X, Lv J, Ma N, Li W. Surface modification and endothelialization of biomaterials as potential scaffolds for vascular tissue engineering applications. Chem Soc Rev. 2015;44(15):5680–742.
Wu G, Li P, Feng H, Zhang X, Chu PK. Engineering and functionalization of biomaterials via surface modification. Journal of Materials Chemistry B. 2015;3(10):2024–42.
Weng Y, Chen J, Tu Q, Li Q, Maitz MF, Huang N. Biomimetic modification of metallic cardiovascular biomaterials: from function mimicking to endothelialization in vivo. Interface Focus. 2012;2(3):356–65.
Xie D, Wan G, Maitz MF, Sun H, Huang N. Deformation and corrosion behaviors of Ti–O film deposited 316L stainless steel by plasma immersion ion implantation and deposition. Surf Coat Technol. 2013;214:117–23.
Zhu J-Z, Xiong X-W, Du R, Jing Y-J, Ying Y, Fan X-M, Zhu T-Q, Zhang R-Y. Hemocompatibility of drug-eluting coronary stents coated with sulfonated poly (styrene-block-isobutylene-block-styrene). Biomaterials. 2012;33(33):8204–12.
Hoshi RA, Van Lith R, Jen MC, Allen JB, Lapidos KA, Ameer G. The blood and vascular cell compatibility of heparin-modified ePTFE vascular grafts. Biomaterials. 2013;34(1):30–41.
Huang N, Yang P, Leng YX, Chen JY, Sun H, Wang J, Wang GJ, Ding PD, Xi TF, Leng Y. Hemocompatibility of titanium oxide films. Biomaterials. 2003;24(13):2177–87.
Huang N, Leng YX, Yang P, Chen JY, Sun H, Wang J, Wan GJ, Zhao AS, Ding PD. Surface modification of coronary artery stent by Ti–O/Ti–N complex film coating prepared with plasma immersion ion implantation and deposition. Nucl Instrum Methods Phys Res, Sect B. 2006;242(1):18–21.
Martinez AW, Chaikof EL. Microfabrication and nanotechnology in stent design. WIREs Nanomed Nanobiotechnol. 2011;3(3):256–68.
Navarro L, Luna J, Rintoul I. Surface conditioning of cardiovascular 316L stainless steel stents: a review. Surf Rev Lett. 2016;24(01):1730002.
Bekmurzayeva A, Duncanson WJ, Azevedo HS, Kanayeva D. Surface modification of stainless steel for biomedical applications: revisiting a century-old material. Mater Sci Eng, C. 2018;93:1073–89.
Zhu S, Huang N, Xu L, Zhang Y, Liu H, Lei Y, Sun H, Yao Y. Biocompatibility of Fe–O films synthesized by plasma immersion ion implantation and deposition. Surf Coat Technol. 2009;203(10):1523–9.
Zhou WR, Zheng YF. 8 - Characterization of modified magnesium and magnesium alloys for biomedical applications. In: Narayanan TSNS, Park I-S, Lee M-H, editors. Surface modification of magnesium and its alloys for biomedical applications. Oxford: Woodhead Publishing; 2015. p. 263–82.
Reejhsinghani R, Lotfi AS. Prevention of stent thrombosis: challenges and solutions. Vasc Health Risk Manag. 2015;11:93–106.
Puranik AS, Dawson ER, Peppas NA. Recent advances in drug eluting stents. Int J Pharm. 2013;441(1):665–79.
Zhang K, Liu T, Li J-A, Chen J-Y, Wang J, Huang N. Surface modification of implanted cardiovascular metal stents: from antithrombosis and antirestenosis to endothelialization. J Biomed Mater Res, Part A. 2014;102(2):588–609.
O’Brien B, Carroll W. The evolution of cardiovascular stent materials and surfaces in response to clinical drivers: a review. Acta Biomater. 2009;5(4):945–58.
O’Brien B, Zafar H, Ibrahim A, Zafar J, Sharif F. Coronary stent materials and coatings: a technology and performance update. Ann Biomed Eng. 2016;44(2):523–35.
Meadows TA, Bhatt DL. Clinical aspects of platelet inhibitors and thrombus formation. Circ Res. 2007;100(9):1261–75.
Kolandaivelu K, Swaminathan R, Gibson WJ, Kolachalama VB, Nguyen-Ehrenreich KL, Giddings VL, Coleman L, Wong GK, Edelman ER. Stent thrombogenicity early in high-risk interventional settings is driven by stent design and deployment and protected by polymer-drug coatings. Circulation. 2011;123(13):1400–9.
Liu J, Li M, Lu H, Qiao W, Xi D, Luo T, Xiong H, Guo Z. Effects of probucol on restenosis after percutaneous coronary intervention: a systematic review and meta-analysis. PLoS ONE. 2015;10(4):e0124021–e0124021.
Okada T, Yamamoto H, Okimoto T, Otsuka M, Ishibashi K, Dohi Y, Fujii T, Tadehara F, Kurisu S, Hayashi Y, Kihara IY. Coronary Atherosclerosis Reduction Project, Beneficial effects of valsartan on target lesion revascularization after percutaneous coronary interventions with bare-metal stents. Circ J. 2011;75(7):1641–8.
Trabattoni D, Bartorelli AL. Late occlusive in-stent restenosis of a bare-metal stent presenting with ST-elevation anterior MI: is restenosis better than a late stent thrombosis? Int J Cardiol. 2009;135(2):e65–7.
Chen M, Osaki S, Zamora PO. Biological response of stainless steel surface modified by N2O/O2 glow discharge plasma. Appl Surf Sci. 2009;255(16):7257–62.
Wiviott SD, Braunwald E, McCabe CH, Horvath I, Keltai M, Herrman JP, Van de Werf F, Downey WE, Scirica BM, Murphy SA, Antman EM. Intensive oral antiplatelet therapy for reduction of ischaemic events including stent thrombosis in patients with acute coronary syndromes treated with percutaneous coronary intervention and stenting in the TRITON-TIMI 38 trial: a subanalysis of a randomised trial. Lancet. 2008;371(9621):1353–63.
Hunter TB, Taljanovic MS. Glossary of medical devices and procedures: abbreviations, acronyms, and definitions. Radiographics. 2003;23(1):195–213.
Curry TS, Dowdey JE, Murry RC, Cameron J. Christensen’s Introduction to the physics of diagnostic radiology. Am J Phys. 1986;54(4):383–383.
Shrivastava S, A.S.M. International. Medical device materials: proceedings from the Materials & Processes for Medical Devices Conference 2003, 8-10 September 2003, Anaheim. ASM International, Materials Park, 2004.
Edelman ER, Seifert P, Groothuis A, Morss A, Bornstein D, Rogers C. Gold-coated NIR stents in porcine coronary arteries. Circulation. 2001;103(3):429–34.
Kastrati A, Schomig A, Dirschinger J, Mehilli J, von Welser N, Pache J, Schuhlen H, Schilling T, Schmitt C, Neumann FJ. Increased risk of restenosis after placement of gold-coated stents: results of a randomized trial comparing gold-coated with uncoated steel stents in patients with coronary artery disease. Circulation. 2000;101(21):2478–83.
Kereiakes DJ, Cox DA, Hermiller JB, Midei MG, Bachinsky WB, Nukta ED, Leon MB, Fink S, Marin L, Lansky AJ. Usefulness of a cobalt chromium coronary stent alloy. Am J Cardiol. 2003;92(4):463–6.
Hehrlein C, Schorch B, Kress N, Arab A, von zur Mühlen C, Bode C, Epting T, Haberstroh J, Mey L, Schwarzbach H, Kinscherf R, Stachniss V, Schiestel S, Kovacs A, Fischer H, Nennig E. Zn-alloy provides a novel platform for mechanically stable bioresorbable vascular stents. PLoS One. 2019;14(1):e0209111.
Ormiston JA, Webster MWI, Armstrong G. First-in-human implantation of a fully bioabsorbable drug-eluting stent: the BVS poly-L-lactic acid everolimus-eluting coronary stent. Catheter Cardiovasc Interv. 2007;69(1):128–31.
Nayak SM. MRI: basic principles and applications. Radiology. 1996;200(1):142–142.
Rutledge JM, Vick Iii GW, Mullins CE, Grifka RG. Safety of magnetic resonance imaging immediately following Palmaz stent implant: a report of three cases. Catheter Cardiovasc Interv. 2001;53(4):519–23.
Syed MA, Carlson K, Murphy M, Ingkanisorn WP, Rhoads KL, Arai AE. Long-term safety of cardiac magnetic resonance imaging performed in the first few days after bare-metal stent implantation. J Magn Reson Imaging. 2006;24(5):1056–61.
Schenck JF. The role of magnetic susceptibility in magnetic resonance imaging: MRI magnetic compatibility of the first and second kinds. Med Phys. 1996;23(6):815–50.
Cano ME, Cordova-Fraga T, Sosa M, Bernal-Alvarado J, Baffa O. Understanding the magnetic susceptibility measurements by using an analytical scale. Eur J Phys. 2008;29(2):345–54.
Abizaid A, Carrié D, Frey N, Lutz M, Weber-Albers J, Dudek D, Chevalier B, Weng S-C, Costa RA, Anderson J, Stone GW. 6-month clinical and angiographic outcomes of a novel radiopaque sirolimus-eluting bioresorbable vascular scaffold: the FANTOM II Study. JACC: Cardiovasc Interv. 2017;10(18):1832–8.
Pugliese F, Cademartiri F, van Mieghem C, Meijboom WB, Malagutti P, Mollet NRA, Martinoli C, de Feyter PJ, Krestin GP. Multidetector CT for visualization of coronary stents. Radiographics. 2006;26(3):887–904.
Waksman R, Pakala R, Kuchulakanti PK, Baffour R, Hellinga D, Seabron R, Tio FO, Wittchow E, Hartwig S, Harder C, Rohde R, Heublein B, Andreae A, Waldmann K-H, Haverich A. Safety and efficacy of bioabsorbable magnesium alloy stents in porcine coronary arteries. Catheter Cardiovasc Interv. 2006;68(4):607–17.
Hug J, Nagel E, Bornstedt A, Schnackenburg B, Oswald H, Fleck E. Coronary arterial stents: safety and artifacts during MR imaging. Radiology. 2000;216(3):781–7.
Li XM, Li HZ, Wang SP, Huang HM, Huang HH, Ai HJ, Xu J. MRI-compatible Nb-60Ta-2Zr alloy used for vascular stents: haemocompatibility and its correlation with protein adsorption, Materials science & engineering. C, Materials for biological applications. 2014;42:385–95.
Guo Y, Duan W, Ma C, Jiang C, Xie Y, Hao H, Wang R, Li L. Biocompatibility and magnetic resonance imaging characteristics of carbon nanotube yarn neural electrodes in a rat model. Biomed Eng Online. 2015;14(1):118.
Li HF, Zhou FY, Li L, Zheng YF. Design and development of novel MRI compatible zirconium- ruthenium alloys with ultralow magnetic susceptibility. Sci Rep. 2016;6:24414.
Guo S, Zhang J, Shang Y, Zhang J, Meng Q, Cheng X, Zhao X. A novel metastable β-type Zr-12Nb-4Sn alloy with low Young’s modulus and low magnetic susceptibility. J Alloy Compd. 2018;745:234–9.
Lopič N, Jelen A, Vrtnik S, Jagličić Z, Wencka M, Starc R, Blinc A, Dolinšek J. Quantitative determination of magnetic force on a coronary stent in MRI. J Magn Reson Imaging. 2013;37(2):391–7.
Arbustini E, Favalli V, Narula J. Functionally incomplete re-endothelialization of stents and neoatherosclerosis. JACC: Cardiovasc Interv. 2017;10(23):2388.
Gareri C, De Rosa S, Indolfi C. MicroRNAs for restenosis and thrombosis after vascular injury. Circ Res. 2016;118(7):1170–84.
Hoare D, Bussooa A, Neale S, Mirzai N, Mercer J. The future of cardiovascular stents: bioresorbable and integrated biosensor technology. Advanced Science. 2019;6(20):1900856.
Maor E, Eleid Mackram F, Gulati R, Lerman A, Sandhu Gurpreet S. Current and future use of robotic devices to perform percutaneous coronary interventions: a review. J Am Heart Assoc. 2017;6(7):e006239.
Fagogenis G, Mencattelli M, Machaidze Z, Rosa B, Price K, Wu F, Weixler V, Saeed M, Mayer JE, Dupont PE. Autonomous robotic intracardiac catheter navigation using haptic vision. Sci Robot. 2019;4(29):eaaw1977.
Grist TM. The next chapter in MRI: back to the future? Radiology. 2019;293(2):394–5.
Funding
JV would like to acknowledge the funding received from Council of Scientific and Industrial Research (CSIR), India, under Direct-SRF scheme (Award No.: 09/844(0108)/2020-EMR-I).
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Conflict of interest
The authors declare no competing interests.
Additional information
The original online version of this article was revised: The name of the author K. G. Prashanth has been corrected.
Rights and permissions
About this article
Cite this article
Vishnu, J., Manivasagam, G., Mantovani, D. et al. Balloon expandable coronary stent materials: a systematic review focused on clinical success. In vitro models 1, 151–175 (2022). https://doi.org/10.1007/s44164-022-00009-w
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s44164-022-00009-w