Skip to main content

Advertisement

Log in

Balloon expandable coronary stent materials: a systematic review focused on clinical success

  • Reviews
  • Published:
In vitro models Aims and scope Submit manuscript

A Correction to this article was published on 14 February 2022

This article has been updated

Abstract

Balloon expandable coronary stenting has revolutionized the field of interventional cardiology as a potential, minimally invasive modality for treating coronary artery disease. Even though stenting is successful compared to angioplasty (that leaves no stent in place), still there are many associated clinical complications. Bare metal stents are associated with in-stent restenosis caused mostly by neointimal hyperplasia, whereas success of drug-eluting stents comes at the expense of late-stent thrombosis and neoatherosclerosis. Even though innovative and promising, clinical trials with bioabsorbable stents reported thrombosis and a rapid pace of degradation without performing scaffolding action in several instances. It should be noted that a vast majority of these stents are based on a metallic platform which still holds the potential to mitigate major cardiovascular events and reduced economic burden to patients, alongside continuous improvement in stent technology and antiplatelet regimes. Hence, a systematic review was conducted following PRISMA guidelines to assess the clinically relevant material properties for a metallic stent material. From a materials perspective, the major causes identified for clinical failure of stents are inferior mechanical properties and blood-material interaction–related complications at the stent surface. In addition to these, the stent material should possess increased radiopacity for improved visibility and lower magnetic susceptibility values for artefact reduction. Moreover, the review provides an overview of future scope of percutaneous coronary interventional strategy. Most importantly, this review highlights the need for an interdisciplinary approach by clinicians, biomaterial scientists, and interventional cardiologists to collaborate in mitigating the impediments associated with cardiovascular stents for alleviating sufferings of millions of people worldwide.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability statement

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Change history

References

  1. World Health Organization. World Health Statistics 2016: monitoring health for the SDGs, 2016. http://www.who.int/gho/publications/world_health_statistics/2016/en/. Accessed 4 Apr 2020.

  2. Benjamin Emelia J, Muntner P, Alonso A, Bittencourt Marcio S, Callaway Clifton W, Carson April P, Chamberlain Alanna M, Chang Alexander R, Cheng S, Das Sandeep R, Delling Francesca N, Djousse L, Elkind Mitchell SV, Ferguson Jane F, Fornage M, Jordan Lori C, Khan Sadiya S, Kissela Brett M, Knutson Kristen L, Kwan Tak W, Lackland Daniel T, Lewis Tené T, Lichtman Judith H, Longenecker Chris T, Loop Matthew S, Lutsey Pamela L, Martin Seth S, Matsushita K, Moran Andrew E, Mussolino Michael E, O’Flaherty M, Pandey A, Perak Amanda M, Rosamond Wayne D, Roth Gregory A, Sampson Uchechukwu KA, Satou Gary M, Schroeder Emily B, Shah Svati H, Spartano Nicole L, Stokes A, Tirschwell David L, Tsao Connie W, Turakhia Mintu P, VanWagner Lisa B, Wilkins John T, Wong Sally S, Virani Salim S. Heart disease and stroke statistics—2019 update: a report from the American Heart Association. Circulation. 2019;139(10):e56–528.

    CAS  PubMed  Google Scholar 

  3. Gruentzig AR, Meier B. Percutaneous transluminal coronary angioplasty. The first five years and the future. Int J Cardiol. 1983;2(3):319–23.

    Article  CAS  PubMed  Google Scholar 

  4. Lincoff AM, Popma JJ, Ellis SG, Hacker JA, Topol EJ. Abrupt vessel closure complicating coronary angioplasty: clinical, angiographic and therapeutic profile. J Am Coll Cardiol. 1992;19(5):926–35.

    Article  CAS  PubMed  Google Scholar 

  5. Sigwart U. The stent story: how it all started…. Eur Heart J. 2017;38(28):2171–2.

    Article  PubMed  Google Scholar 

  6. Stoeckel D, Pelton A, Duerig T. Self-expanding nitinol stents: material and design considerations. Eur Radiol. 2004;14(2):292–301.

    Article  PubMed  Google Scholar 

  7. Zidar DA. Newer-generation drug-eluting stents: heal thyself. Sci Transl Med. 2013;5(211):211ec190.

    Article  Google Scholar 

  8. Ong ATL, Serruys PW. Technology Insight: an overview of research in drug-eluting stents. Nat Clin Pract Cardiovasc Med. 2005;2(12):647–58.

    Article  CAS  PubMed  Google Scholar 

  9. Hermawan H, Dubé D, Mantovani D. Developments in metallic biodegradable stents. Acta Biomater. 2010;6(5):1693–7.

    Article  CAS  PubMed  Google Scholar 

  10. Hermawan H, Purnama A, Dube D, Couet J, Mantovani D. Fe–Mn alloys for metallic biodegradable stents: degradation and cell viability studies. Acta Biomater. 2010;6(5):1852–60.

    Article  CAS  PubMed  Google Scholar 

  11. Bowen PK, Shearier ER, Zhao S, Guillory Ii RJ, Zhao F, Goldman J, Drelich JW. Biodegradable metals for cardiovascular stents: from clinical concerns to recent Zn-alloys. Adv Healthc Mater. 2016;5(10):1121–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bangalore S. The elusive late benefit of biodegradable polymer drug-eluting stents. Circulation. 2019;139(3):334–6.

    Article  PubMed  Google Scholar 

  13. Hassan AKM, Bergheanu SC, Stijnen T, van der Hoeven BL, Snoep JD, Plevier JWM, Schalij MJ, Wouter Jukema J. Late stent malapposition risk is higher after drug-eluting stent compared with bare-metal stent implantation and associates with late stent thrombosis. Eur Heart J. 2009;31(10):1172–80.

    Article  PubMed  CAS  Google Scholar 

  14. Gunn J, Cumberland D. Does stent design influence restenosis? Eur Heart J. 1999;20(14):1009–13.

    Article  CAS  PubMed  Google Scholar 

  15. Baumann F, Fust J, Peter Engelberger R, Hügel U, Do D-D, Willenberg T, Baumgartner I, Diehm N. Early recoil after balloon angioplasty of tibial artery obstructions in patients with critical limb ischemia. J Endovasc Ther. 2014;21(1):44–51.

    Article  PubMed  Google Scholar 

  16. Bi Y, Wu T, Jiang X, Kislauskis E, Laham R. Abstract 16528: Structural instability, the potential cause for current BVS scaffold’s failure. Circulation. 2018;138(Suppl_1):A16528.

    Google Scholar 

  17. Bønaa KH, Mannsverk J, Wiseth R, Aaberge L, Myreng Y, Nygård O, Nilsen DW, Kløw N-E, Uchto M, Trovik T, Bendz B, Stavnes S, Bjørnerheim R, Larsen A-I, Slette M, Steigen T, Jakobsen OJ, Bleie Ø, Fossum E, Hanssen TA, Dahl-Eriksen Ø, Njølstad I, Rasmussen K, Wilsgaard T, Nordrehaug JE. Drug-eluting or bare-metal stents for coronary artery disease. N Engl J Med. 2016;375(13):1242–52.

    Article  PubMed  CAS  Google Scholar 

  18. Meier B. Interventional cardiology, where real life and science do not necessarily meet †. Eur Heart J. 2016;37(26):2014–9.

    Article  PubMed  Google Scholar 

  19. Torii S, Jinnouchi H, Sakamoto A, Kutyna M, Cornelissen A, Kuntz S, Guo L, Mori H, Harari E, Paek KH, Fernandez R, Chahal D, Romero ME, Kolodgie FD, Gupta A, Virmani R, Finn AV. Drug-eluting coronary stents: insights from preclinical and pathology studies. Nat Rev Cardiol. 2020;17(1):37–51.

    Article  CAS  PubMed  Google Scholar 

  20. Lee D-H, de la Torre Hernandez JM. The newest generation of drug-eluting stents and beyond. Eur Cardiol. 2018;13(1):54–9.

    Article  PubMed  PubMed Central  Google Scholar 

  21. McMahon S, Bertollo N, Cearbhaill EDO, Salber J, Pierucci L, Duffy P, Dürig T, Bi V, Wang W. Bio-resorbable polymer stents: a review of material progress and prospects. Prog Polym Sci. 2018;83:79–96.

    Article  CAS  Google Scholar 

  22. Zhang L-C, Chen L-Y. A review on biomedical titanium alloys: recent progress and prospect. Adv Eng Mater. 2019;21(4):1801215.

    Article  CAS  Google Scholar 

  23. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: the PRISMA statement. Ann Intern Med. 2009;151(4):264–9 W64.

    Article  PubMed  Google Scholar 

  24. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JPA, Clarke M, Devereaux PJ, Kleijnen J, Moher D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ. 2009;339:b2700.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Torrado J, Buckley L, Durán A, Trujillo P, Toldo S, Valle Raleigh J, Abbate A, Biondi-Zoccai G, Guzmán LA. Restenosis, stent thrombosis, and bleeding complications: navigating between Scylla and Charybdis. J Am Coll Cardiol. 2018;71(15):1676–95.

    Article  PubMed  Google Scholar 

  26. Vishnu J, Manivasagam G. Perspectives on smart stents with sensors: from conventional permanent to novel bioabsorbable smart stent technologies. Med Devices Sensors. 2020;3(6):e10116.

    Article  Google Scholar 

  27. Kan J, Ge Z, Zhang J-J, Liu Z-Z, Tian N-L, Ye F, Li S-J, Qian X-S, Yang S, Chen M-X, Rab T, Chen S-L. Incidence and clinical outcomes of stent fractures on the basis of 6,555 patients and 16,482 drug-eluting stents from 4 centers. JACC: Cardiovasc Interv. 2016;9(11):1115.

    Google Scholar 

  28. Chhatriwalla AK, Cam A, Unzek S, Bhatt DL, Raymond RE, Lincoff AM, Whitlow PL, Ellis SG, Tuzcu EM, Kapadia SR. Drug-eluting stent fracture and acute coronary syndrome. Cardiovasc Revasc Med. 2009;10(3):166–71.

    Article  PubMed  Google Scholar 

  29. Kosonen P, Vikman S, Jensen LO, Lassen JF, Harnek J, Olivecrona GK, Erglis A, Fossum E, Niemela M, Kervinen K, Ylitalo A, Pietila M, Aaroe J, Kellerth T, Saunamaki K, Thayssen P, Hellsten L, Thuesen L, Niemela K. Intravascular ultrasound assessed incomplete stent apposition and stent fracture in stent thrombosis after bare metal versus drug-eluting stent treatment the Nordic Intravascular Ultrasound Study (NIVUS). Int J Cardiol. 2013;168(2):1010–6.

    Article  PubMed  Google Scholar 

  30. Schillinger M, Minar E. Endovascular stent implantation for treatment of peripheral artery disease. Eur J Clin Invest. 2007;37(3):165–70.

    Article  CAS  PubMed  Google Scholar 

  31. Yin T-Y, Wang G-X, Zhang D-C, Du D-Y, Li Z-G, Luo L-L, Hou Y-B, Wang Y-Z, Zhao J-B. Endothelialization and in-stent restenosis on the surface of glycoprotein IIIa monoclonal antibody eluting stent. J Biomed Mater Res, Part A. 2012;100A(6):1398–406.

    Article  CAS  Google Scholar 

  32. McFadden EP, Stabile E, Regar E, Cheneau E, Ong AT, Kinnaird T, Suddath WO, Weissman NJ, Torguson R, Kent KM, Pichard AD, Satler LF, Waksman R, Serruys PW. Late thrombosis in drug-eluting coronary stents after discontinuation of antiplatelet therapy. Lancet. 2004;364(9444):1519–21.

    Article  CAS  PubMed  Google Scholar 

  33. Pfisterer M, Brunner-La Rocca HP, Buser PT, Rickenbacher P, Hunziker P, Mueller C, Jeger R, Bader F, Osswald S, Kaiser C. Late clinical events after clopidogrel discontinuation may limit the benefit of drug-eluting stents: an observational study of drug-eluting versus bare-metal stents. J Am Coll Cardiol. 2006;48(12):2584–91.

    Article  CAS  PubMed  Google Scholar 

  34. Cook S, Wenaweser P, Togni M, Billinger M, Morger C, Seiler C, Vogel R, Hess O, Meier B, Windecker S. Incomplete stent apposition and very late stent thrombosis after drug-eluting stent implantation. Circulation. 2007;115(18):2426–34.

    Article  CAS  PubMed  Google Scholar 

  35. Philip F, Stewart S, Southard JA. Very late stent thrombosis with second generation drug eluting stents compared to bare metal stents: network meta-analysis of randomized primary percutaneous coronary intervention trials. Catheter Cardiovasc Interv. 2016;88(1):38–48.

    Article  PubMed  Google Scholar 

  36. Kastrati A, Mehilli J, Dirschinger J, Dotzer F, Schuhlen H, Neumann FJ, Fleckenstein M, Pfafferott C, Seyfarth M, Schomig A. Intracoronary stenting and angiographic results: strut thickness effect on restenosis outcome (ISAR-STEREO) trial. Circulation. 2001;103(23):2816–21.

    Article  CAS  PubMed  Google Scholar 

  37. Pache J, Kastrati A, Mehilli J, Schuhlen H, Dotzer F, Hausleiter J, Fleckenstein M, Neumann FJ, Sattelberger U, Schmitt C, Muller M, Dirschinger J, Schomig A. Intracoronary stenting and angiographic results: strut thickness effect on restenosis outcome (ISAR-STEREO-2) trial. J Am Coll Cardiol. 2003;41(8):1283–8.

    Article  PubMed  Google Scholar 

  38. Choudhry S, Balzer D, Murphy J, Nicolas R, Shahanavaz S. Percutaneous carotid artery access in infants < 3 months of age. Catheter Cardiovasc Interv. 2016;87(4):757–61.

    Article  PubMed  Google Scholar 

  39. Menown IB, Noad R, Garcia EJ, Meredith I. The platinum chromium element stent platform: from alloy, to design, to clinical practice. Adv Ther. 2010;27(3):129–41.

    Article  CAS  PubMed  Google Scholar 

  40. Attia MF, Brummel BR, Lex TR, Van Horn BA, Whitehead DC, Alexis F. Recent advances in polyesters for biomedical imaging. Adv Healthcare Mater. 2018;7(22):1800798.

    Article  CAS  Google Scholar 

  41. Groover MP. Fundamentals of modern manufacturing: materials, processes, and systems. Wiley; 2010.

    Google Scholar 

  42. Clifford M, Simmons K, Shipway P. An introduction to mechanical engineering: Part 1. CRC Press; 2009.

    Book  Google Scholar 

  43. Agrawal M, Hakeem A, Ahmed Z, Uretsky BF. Classification of mechanisms of strut malapposition after angiographically optimized stent implantation: an optical coherence tomography study. Catheter Cardiovasc Interv. 2017;90(2):225–32.

    Article  PubMed  Google Scholar 

  44. Mizuki T, Kubo T, Horimoto K, Matsusaka H, Ashihara T. Successful retrieval of an entrapped coronary stent with its delivery system by small balloon dilatation at the entrapped site: a case report. J Indian Coll Cardiol. 2015;5(1):67–70.

    Article  Google Scholar 

  45. Ling AJ, Mwipatayi P, Gandhi T, Sieunarine K. Stenting for carotid artery stenosis: fractures, proposed etiology and the need for surveillance. J Vasc Surg. 2008;47(6):1220–6.

    Article  PubMed  Google Scholar 

  46. Halwani DO, Anderson PG, Brott BC, Anayiotos AS, Lemons JE. Clinical device-related article surface characterization of explanted endovascular stents: evidence of in vivo corrosion, Journal of biomedical materials research. Part B, Applied biomaterials. 2010;95(1):225–38.

    Article  CAS  Google Scholar 

  47. Foin N, Alegria E, Sen S, Petraco R, Nijjer S, Di Mario C, Francis DP, Davies JE. Importance of knowing stent design threshold diameters and post-dilatation capacities to optimise stent selection and prevent stent overexpansion/incomplete apposition during PCI. Int J Cardiol. 2013;166(3):755–8.

    Article  CAS  PubMed  Google Scholar 

  48. Mani G, Feldman MD, Patel D, Agrawal CM. Coronary stents: a materials perspective. Biomaterials. 2007;28(9):1689–710.

    Article  CAS  PubMed  Google Scholar 

  49. Lévesque J, Dubé D, Fiset M, Mantovani D. Materials and properties for coronary stents. Advanced Materials and Processes. 2004;162(9):45–48.

  50. Maglione J, Bergersen L, Lock James E, McElhinney Doff B. Ultra-high-pressure balloon angioplasty for treatment of resistant stenoses within or adjacent to previously implanted pulmonary arterial stents. Circulation: Cardiovasc Interv. 2009;2(1):52–8.

    Google Scholar 

  51. Khalilimeybodi A, Alishzadeh Khoei A, Sharif-Kashani B. Future balloon-expandable stents: high or low-strength materials? Cardiovasc Eng Technol. 2020;11(2):188–204.

    Article  PubMed  Google Scholar 

  52. Craig CH, Friend CM, Edwards MR, Cornish LA, Gokcen NA. Mechanical properties and microstructure of platinum enhanced radiopaque stainless steel (PERSS) alloys. J Alloy Compd. 2003;361(1):187–99.

    Article  CAS  Google Scholar 

  53. Köster R, Vieluf D, Kiehn M, Sommerauer M, Kähler J, Baldus S, Meinertz T, Hamm CW. Nickel and molybdenum contact allergies in patients with coronary in-stent restenosis. The Lancet. 2000;356(9245):1895–7.

    Article  Google Scholar 

  54. Li J, Yang Y, Ren Y, Dong J, Yang K. Effect of cold deformation on corrosion fatigue behavior of nickel-free high nitrogen austenitic stainless steel for coronary stent application. J Mater Sci Technol. 2018;34(4):660–5.

    Article  CAS  Google Scholar 

  55. Katada Y, Taguchi T. Nickel-Free High-Nitrogen Stainless Steel. In: Niinomi M, Narushima T, Nakai M, editors. Advances in metallic biomaterials: tissues, materials and biological reactions. Berlin, Heidelberg: Springer, Berlin Heidelberg; 2015. p. 125–56.

    Chapter  Google Scholar 

  56. Bangalore S, Toklu B, Patel N, Feit F, Stone Gregg W. Newer-generation ultrathin strut drug-eluting stents versus older second-generation thicker strut drug-eluting stents for coronary artery disease. Circulation. 2018;138(20):2216–26.

    Article  CAS  PubMed  Google Scholar 

  57. van Bommel RJ, Lemmert ME, van Mieghem NM, van Geuns R-J, van Domburg RT, Daemen J. Occurrence and predictors of acute stent recoil—a comparison between the xience prime cobalt chromium stent and the promus premier platinum chromium stent. Catheter Cardiovasc Interv. 2018;91(3):E21–8.

    Article  PubMed  Google Scholar 

  58. Ringel RE, Gauvreau K, Moses H, Jenkins KJ. Coarctation of the Aorta Stent Trial (COAST): study design and rationale. Am Heart J. 2012;164(1):7–13.

    Article  PubMed  Google Scholar 

  59. Ewert P, Schubert S, Peters B, Abdul-Khaliq H, Nagdyman N, Lange PE. The CP stent–short, long, covered–for the treatment of aortic coarctation, stenosis of pulmonary arteries and caval veins, and Fontan anastomosis in children and adults: an evaluation of 60 stents in 53 patients. Heart. 2005;91(7):948–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zheng Y, Xu X, Xu Z, Wang J, Cai H. Introduction of the biofunctions into traditional metallic biomaterials. In: Zheng Y, Xu X, Xu Z, Wang J, Cai H, editors. Metallic biomaterials. 2017. p. 31–57.

  61. O’Brien B, Stinson J, Carroll W. Development of a new niobium-based alloy for vascular stent applications. J Mech Behav Biomed Mater. 2008;1(4):303–12.

    Article  PubMed  Google Scholar 

  62. Li HZ, Xu J. MRI compatible Nb-Ta-Zr alloys used for vascular stents: optimization for mechanical properties. J Mech Behav Biomed Mater. 2014;32:166–76.

    Article  CAS  PubMed  Google Scholar 

  63. Geetha M, Singh AK, Asokamani R, Gogia AK. Ti based biomaterials, the ultimate choice for orthopaedic implants – a review. Prog Mater Sci. 2009;54(3):397–425.

    Article  CAS  Google Scholar 

  64. Aljihmani L, Alic L, Boudjemline Y, Hijazi ZM, Mansoor B, Serpedin E, Qaraqe K. Magnesium-based bioresorbable stent materials: review of reviews. J Bio- Tribo-Corros. 2019;5(1):26.

    Article  Google Scholar 

  65. O’Brien B, Stinson J, Carroll W. Initial exploration of Ti-Ta, Ti-Ta-Ir and Ti-Ir alloys: candidate materials for coronary stents. Acta Biomater. 2008;4(5):1553–9.

    Article  PubMed  CAS  Google Scholar 

  66. Prima F, Sun F, Vermaut P, Gloriant T, Mantovani D, Jacques PJ. High performance beta titanium alloys as a new material perspective for cardiovascular applications. Mater Sci Forum. 2012;706–709:578–83.

    Article  CAS  Google Scholar 

  67. Gordin DM, Sun F, Laillé D, Prima F, Gloriant T. How a new strain transformable titanium-based biomedical alloy can be designed for balloon expendable stents. Materialia. 2020;10:100638.

    Article  CAS  Google Scholar 

  68. Bowen PK, Drelich A, Drelich J, Goldman J. Rates of in vivo (arterial) and in vitro biocorrosion for pure magnesium. J Biomed Mater Res, Part A. 2015;103(1):341–9.

    Article  CAS  Google Scholar 

  69. Peuster M, Hesse C, Schloo T, Fink C, Beerbaum P, von Schnakenburg C. Long-term biocompatibility of a corrodible peripheral iron stent in the porcine descending aorta. Biomaterials. 2006;27(28):4955–62.

    Article  CAS  PubMed  Google Scholar 

  70. Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN. Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol. 2014;7(2):60–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Bowen PK, Drelich J, Goldman J. Zinc exhibits ideal physiological corrosion behavior for bioabsorbable stents. Adv Mater. 2013;25(18):2577–82.

    Article  CAS  PubMed  Google Scholar 

  72. Bukala J, Kwiatkowski P, Malachowski J. Numerical analysis of crimping and inflation process of balloon-expandable coronary stent using implicit solution. Int J Numer Methods Biomed Eng. 2017;33(12):e2890.

    Article  Google Scholar 

  73. Martin D, Boyle FJ. Computational structural modelling of coronary stent deployment: a review. Comput Methods Biomech Biomed Engin. 2011;14(4):331–48.

    Article  PubMed  Google Scholar 

  74. Bukala J, Kwiatkowski P, Malachowski J. Numerical analysis of stent expansion process in coronary artery stenosis with the use of non-compliant balloon. Biocybern Biomed Eng. 2016;36(1):145–56.

    Article  Google Scholar 

  75. Moravej M, Mantovani D. Biodegradable metals for cardiovascular stent application: interests and new opportunities. Int J Mol Sci. 2011;12(7):4250–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Yang K, Ren Y. Nickel-free austenitic stainless steels for medical applications. Sci Technol Adv Mater. 2010;11(1):014105.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Poncin P, Millet C, Chevy J, Proft J. Comparing and optimizing Co-Cr tubing for stent applications, Medical Device Materials II - Proceedings of the Materials and Processes for Medical Devices Conference 2004. 2005.

  78. O’Brien BJ, Stinson JS, Larsen SR, Eppihimer MJ, Carroll WM. A platinum–chromium steel for cardiovascular stents. Biomaterials. 2010;31(14):3755–61.

    Article  PubMed  CAS  Google Scholar 

  79. Al-Mangour B. Coronary stents fracture: an engineering approach (review). Mater Sci Appl. 2013;04(10):606–21.

    CAS  Google Scholar 

  80. O’Brien BJ, Stinson JS, Boismier DA, Carroll WM. Characterization of an NbTaWZr alloy designed for magnetic resonance angiography compatible stents. Biomaterials. 2008;29(34):4540–5.

    Article  PubMed  CAS  Google Scholar 

  81. Li H-Z, Xu J. MRI compatible Nb–Ta–Zr alloys used for vascular stents: optimization for mechanical properties. J Mech Behav Biomed Mater. 2014;32:166–76.

    Article  CAS  PubMed  Google Scholar 

  82. O’Brien B, Stinson J, Carroll W. Initial exploration of Ti–Ta, Ti–Ta–Ir and Ti–Ir alloys: candidate materials for coronary stents. Acta Biomater. 2008;4(5):1553–9.

    Article  PubMed  CAS  Google Scholar 

  83. Niu J, Tang Z, Huang H, Pei J, Zhang H, Yuan G, Ding W. Research on a Zn-Cu alloy as a biodegradable material for potential vascular stents application. Mater Sci Eng, C. 2016;69:407–13.

    Article  CAS  Google Scholar 

  84. Katarivas Levy G, Goldman J, Aghion E. The prospects of zinc as a structural material for biodegradable implants—a review paper. Metals. 2017;7(10):402.

    Article  CAS  Google Scholar 

  85. Halwani DO, Anderson PG, Brott BC, Anayiotos AS, Lemons JE. The role of vascular calcification in inducing fatigue and fracture of coronary stents, Journal of biomedical materials research. Part B, Applied biomaterials. 2012;100(1):292–304.

    Article  CAS  Google Scholar 

  86. Kaushish JP. Manufacturing processes. PHI Learning; 2010.

    Google Scholar 

  87. Sweeney CA, O’Brien B, Dunne FPE, McHugh PE, Leen SB. Micro-scale testing and micromechanical modelling for high cycle fatigue of CoCr stent material. J Mech Behav Biomed Mater. 2015;46:244–60.

    Article  CAS  PubMed  Google Scholar 

  88. Sweeney CA, O’Brien B, McHugh PE, Leen SB. Experimental characterisation for micromechanical modelling of CoCr stent fatigue. Biomaterials. 2014;35(1):36–48.

    Article  CAS  PubMed  Google Scholar 

  89. Sweeney CA, O’Brien B, Dunne FPE, McHugh PE, Leen SB. Strain-gradient modelling of grain size effects on fatigue of CoCr alloy. Acta Mater. 2014;78:341–53.

    Article  CAS  Google Scholar 

  90. Khatibi G, Lederer M, Betzwar Kotas A, Frotscher M, Krause A, Poehlmann S. High-cycle fatigue behavior of thin-walled CoCr tubes. Int J Fatigue. 2015;80:103–12.

    Article  CAS  Google Scholar 

  91. Azaouzi M, Makradi A, Petit J, Belouettar S, Polit O. On the numerical investigation of cardiovascular balloon-expandable stent using finite element method. Comput Mater Sci. 2013;79:326–35.

    Article  CAS  Google Scholar 

  92. Kapnisis K, Constantinides G, Georgiou H, Cristea D, Gabor C, Munteanu D, Brott B, Anderson P, Lemons J, Anayiotos A. Multi-scale mechanical investigation of stainless steel and cobalt-chromium stents. J Mech Behav Biomed Mater. 2014;40:240–51.

    Article  CAS  PubMed  Google Scholar 

  93. Li J, Luo Q, Xie Z, Li Y, Zeng Y. Fatigue life analysis and experimental verification of coronary stent. Heart Vessels. 2010;25(4):333–7.

    Article  PubMed  Google Scholar 

  94. Gu XN, Zhou WR, Zheng YF, Cheng Y, Wei SC, Zhong SP, Xi TF, Chen LJ. Corrosion fatigue behaviors of two biomedical Mg alloys – AZ91D and WE43 – in simulated body fluid. Acta Biomater. 2010;6(12):4605–13.

    Article  CAS  PubMed  Google Scholar 

  95. Hermawan H. Updates on the research and development of absorbable metals for biomedical applications. Prog Biomater. 2018;7(2):93–110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Xie D, Leng YX, Jing FJ, Huang N. A brief review of bio-tribology in cardiovascular devices. Biosurf Biotribol. 2015;1(4):249–62.

    Article  Google Scholar 

  97. Jaffer IH, Fredenburgh JC, Hirsh J, Weitz JI. Medical device-induced thrombosis: what causes it and how can we prevent it? J Thromb Haemost. 2015;13(S1):S72–81.

    Article  PubMed  Google Scholar 

  98. Mackman N. Triggers, targets and treatments for thrombosis. Nature. 2008;451(7181):914–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Varga-Szabo D, Pleines I, Nieswandt B. Cell adhesion mechanisms in platelets. Arterioscler Thromb Vasc Biol. 2008;28(3):403–12.

    Article  CAS  PubMed  Google Scholar 

  100. Reininger AJ. Function of von Willebrand factor in haemostasis and thrombosis. Haemophilia. 2008;14(s5):11–26.

    Article  CAS  PubMed  Google Scholar 

  101. Ruggeri ZM. Platelets in atherothrombosis. Nat Med. 2002;8(11):1227–34.

    Article  CAS  PubMed  Google Scholar 

  102. Bartlet K, Movafaghi S, Kota A, Popat KC. Superhemophobic titania nanotube array surfaces for blood contacting medical devices. RSC Adv. 2017;7(56):35466–76.

    Article  CAS  Google Scholar 

  103. Kafkas N, Dragasis S. Current knowledge on very late stent thrombosis. Cont Cardiol Educ. 2018;4(1):40–4.

    Article  Google Scholar 

  104. Varenhorst C, Lindholm M, Sarno G, Olivecrona G, Jensen U, Nilsson J, Carlsson J, James S, Lagerqvist B. Stent thrombosis rates the first year and beyond with new- and old-generation drug-eluting stents compared to bare metal stents. Clin Res Cardiol. 2018;107(9):816–23.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Claessen BE, Henriques JPS, Jaffer FA, Mehran R, Piek JJ, Dangas GD. Stent thrombosis: a clinical perspective. JACC: Cardiovasc Interv. 2014;7(10):1081–92.

    Google Scholar 

  106. Seyfert UT, Biehl V, Schenk J. In vitro hemocompatibility testing of biomaterials according to the ISO 10993–4. Biomol Eng. 2002;19(2):91–6.

    Article  CAS  PubMed  Google Scholar 

  107. Weber M, Steinle H, Golombek S, Hann L, Schlensak C, Wendel HP, Avci-Adali M. Blood-contacting biomaterials: in vitro evaluation of the hemocompatibility, Front Bioeng. Biotechnol. 2018;6:99–99.

    Google Scholar 

  108. van der Meijden PEJ, Heemskerk JWM. Platelet biology and functions: new concepts and clinical perspectives. Nat Rev Cardiol. 2019;16(3):166–79.

    Article  PubMed  CAS  Google Scholar 

  109. Marx Steven O, Totary-Jain H, Marks Andrew R. Vascular smooth muscle cell proliferation in restenosis. Circulation: Cardiovasc Interv. 2011;4(1):104–11.

    CAS  Google Scholar 

  110. Meyers SR, Hamilton PT, Walsh EB, Kenan DJ, Grinstaff MW. Endothelialization of titanium surfaces. Adv Mater. 2007;19(18):2492–8.

    Article  CAS  Google Scholar 

  111. Byrne RA, Serruys PW, Baumbach A, Escaned J, Fajadet J, James S, Joner M, Oktay S, Jüni P, Kastrati A, Sianos G, Stefanini GG, Wijns W, Windecker S. Report of a European Society of Cardiology-European Association of Percutaneous Cardiovascular Interventions task force on the evaluation of coronary stents in Europe: executive summary. Eur Heart J. 2015;36(38):2608–20.

    Article  PubMed  Google Scholar 

  112. Gailani D, Renne T. Intrinsic pathway of coagulation and arterial thrombosis. Arterioscler Thromb Vasc Biol. 2007;27(12):2507–13.

    Article  CAS  PubMed  Google Scholar 

  113. Ankrum J. Cell therapies can bring insult to injury. Sci Transl Med. 2020;12(532):eabb0792.

    Article  Google Scholar 

  114. Mackman N, Bergmeier W, Stouffer GA, Weitz JI. Therapeutic strategies for thrombosis: new targets and approaches. Nat Rev Drug Discov. 2020;19(5):333–52.

    Article  CAS  PubMed  Google Scholar 

  115. Soike T, Streff AK, Guan C, Ortega R, Tantawy M, Pino C, Shastri VP. Engineering a material surface for drug delivery and imaging using layer-by-layer assembly of functionalized nanoparticles. Adv Mater. 2010;22(12):1392–7.

    Article  CAS  PubMed  Google Scholar 

  116. Żeliszewska P, Sadowska M, Morga M, Adamczyk Z. Mechanism of fibrinogen /microparticle complex deposition on solid substrates: role of pH. Colloids Surf B: Biointerfaces. 2019;184:110424.

    Article  PubMed  CAS  Google Scholar 

  117. Castellanos MI, Mas-Moruno C, Grau A, Serra-Picamal X, Trepat X, Albericio F, Joner M, Gil FJ, Ginebra MP, Manero JM, Pegueroles M. Functionalization of CoCr surfaces with cell adhesive peptides to promote HUVECs adhesion and proliferation. Appl Surf Sci. 2017;393:82–92.

    Article  CAS  Google Scholar 

  118. Windecker S, Mayer I, De Pasquale G, Maier W, Dirsch O, De Groot P, Wu Y-P, Noll G, Leskosek B, Meier B, Hess Otto M. Stent coating with titanium-nitride-oxide for reduction of neointimal hyperplasia. Circulation. 2001;104(8):928–33.

    Article  CAS  PubMed  Google Scholar 

  119. Hasebe T, Ishimaru T, Kamijo A, Yoshimoto Y, Yoshimura T, Yohena S, Kodama H, Hotta A, Takahashi K, Suzuki T. Effects of surface roughness on anti-thrombogenicity of diamond-like carbon films. Diam Relat Mater. 2007;16(4):1343–8.

    Article  CAS  Google Scholar 

  120. Linneweber J, Dohmen PM, Kertzscher U, Affeld K, Nose Y, Konertz W. The effect of surface roughness on activation of the coagulation system and platelet adhesion in rotary blood pumps. Artif Organs. 2007;31(5):345–51.

    Article  PubMed  Google Scholar 

  121. Schieber R, Lasserre F, Hans M, Fernández-Yagüe M, Díaz-Ricart M, Escolar G, Ginebra M-P, Mücklich F, Pegueroles M. Direct laser interference patterning of CoCr alloy surfaces to control endothelial cell and platelet response for cardiovascular applications. Adv Healthcare Mater. 2017;6(19):1700327.

    Article  CAS  Google Scholar 

  122. Choudhary S, Haberstroh KM, Webster TJ. Enhanced functions of vascular cells on nanostructured Ti for improved stent applications. Tissue Eng. 2007;13(7):1421–30.

    Article  CAS  PubMed  Google Scholar 

  123. Shih C-C, Shih C-M, Su Y-Y, Su LHJ, Chang M-S, Lin S-J. Effect of surface oxide properties on corrosion resistance of 316L stainless steel for biomedical applications. Corros Sci. 2004;46(2):427–41.

    Article  CAS  Google Scholar 

  124. Milleret V, Ziogas A, Buzzi S, Heuberger R, Zucker A, Ehrbar M. Effect of oxide layer modification of CoCr stent alloys on blood activation and endothelial behavior. J Biomed Mater Res B Appl Biomater. 2015;103(3):629–40.

    Article  PubMed  CAS  Google Scholar 

  125. Sharma CP. Blood-compatible materials: a perspective. J Biomater Appl. 2001;15(4):359–81.

    Article  CAS  PubMed  Google Scholar 

  126. Sousa JE, Serruys Patrick W, Costa Marco A. New frontiers in cardiology. Circulation. 2003;107(17):2274–9.

    Article  PubMed  Google Scholar 

  127. Ren L, Xu L, Feng J, Zhang Y, Yang K. In vitro study of role of trace amount of Cu release from Cu-bearing stainless steel targeting for reduction of in-stent restenosis. J Mater Sci - Mater Med. 2012;23(5):1235–45.

    Article  CAS  PubMed  Google Scholar 

  128. Ren X, Feng Y, Guo J, Wang H, Li Q, Yang J, Hao X, Lv J, Ma N, Li W. Surface modification and endothelialization of biomaterials as potential scaffolds for vascular tissue engineering applications. Chem Soc Rev. 2015;44(15):5680–742.

    Article  CAS  PubMed  Google Scholar 

  129. Wu G, Li P, Feng H, Zhang X, Chu PK. Engineering and functionalization of biomaterials via surface modification. Journal of Materials Chemistry B. 2015;3(10):2024–42.

    Article  CAS  PubMed  Google Scholar 

  130. Weng Y, Chen J, Tu Q, Li Q, Maitz MF, Huang N. Biomimetic modification of metallic cardiovascular biomaterials: from function mimicking to endothelialization in vivo. Interface Focus. 2012;2(3):356–65.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Xie D, Wan G, Maitz MF, Sun H, Huang N. Deformation and corrosion behaviors of Ti–O film deposited 316L stainless steel by plasma immersion ion implantation and deposition. Surf Coat Technol. 2013;214:117–23.

    Article  CAS  Google Scholar 

  132. Zhu J-Z, Xiong X-W, Du R, Jing Y-J, Ying Y, Fan X-M, Zhu T-Q, Zhang R-Y. Hemocompatibility of drug-eluting coronary stents coated with sulfonated poly (styrene-block-isobutylene-block-styrene). Biomaterials. 2012;33(33):8204–12.

    Article  CAS  PubMed  Google Scholar 

  133. Hoshi RA, Van Lith R, Jen MC, Allen JB, Lapidos KA, Ameer G. The blood and vascular cell compatibility of heparin-modified ePTFE vascular grafts. Biomaterials. 2013;34(1):30–41.

    Article  CAS  PubMed  Google Scholar 

  134. Huang N, Yang P, Leng YX, Chen JY, Sun H, Wang J, Wang GJ, Ding PD, Xi TF, Leng Y. Hemocompatibility of titanium oxide films. Biomaterials. 2003;24(13):2177–87.

    Article  CAS  PubMed  Google Scholar 

  135. Huang N, Leng YX, Yang P, Chen JY, Sun H, Wang J, Wan GJ, Zhao AS, Ding PD. Surface modification of coronary artery stent by Ti–O/Ti–N complex film coating prepared with plasma immersion ion implantation and deposition. Nucl Instrum Methods Phys Res, Sect B. 2006;242(1):18–21.

    Article  CAS  Google Scholar 

  136. Martinez AW, Chaikof EL. Microfabrication and nanotechnology in stent design. WIREs Nanomed Nanobiotechnol. 2011;3(3):256–68.

    Article  CAS  Google Scholar 

  137. Navarro L, Luna J, Rintoul I. Surface conditioning of cardiovascular 316L stainless steel stents: a review. Surf Rev Lett. 2016;24(01):1730002.

    Article  CAS  Google Scholar 

  138. Bekmurzayeva A, Duncanson WJ, Azevedo HS, Kanayeva D. Surface modification of stainless steel for biomedical applications: revisiting a century-old material. Mater Sci Eng, C. 2018;93:1073–89.

    Article  CAS  Google Scholar 

  139. Zhu S, Huang N, Xu L, Zhang Y, Liu H, Lei Y, Sun H, Yao Y. Biocompatibility of Fe–O films synthesized by plasma immersion ion implantation and deposition. Surf Coat Technol. 2009;203(10):1523–9.

    Article  CAS  Google Scholar 

  140. Zhou WR, Zheng YF. 8 - Characterization of modified magnesium and magnesium alloys for biomedical applications. In: Narayanan TSNS, Park I-S, Lee M-H, editors. Surface modification of magnesium and its alloys for biomedical applications. Oxford: Woodhead Publishing; 2015. p. 263–82.

    Chapter  Google Scholar 

  141. Reejhsinghani R, Lotfi AS. Prevention of stent thrombosis: challenges and solutions. Vasc Health Risk Manag. 2015;11:93–106.

    PubMed  PubMed Central  Google Scholar 

  142. Puranik AS, Dawson ER, Peppas NA. Recent advances in drug eluting stents. Int J Pharm. 2013;441(1):665–79.

    Article  CAS  PubMed  Google Scholar 

  143. Zhang K, Liu T, Li J-A, Chen J-Y, Wang J, Huang N. Surface modification of implanted cardiovascular metal stents: from antithrombosis and antirestenosis to endothelialization. J Biomed Mater Res, Part A. 2014;102(2):588–609.

    Article  CAS  Google Scholar 

  144. O’Brien B, Carroll W. The evolution of cardiovascular stent materials and surfaces in response to clinical drivers: a review. Acta Biomater. 2009;5(4):945–58.

    Article  PubMed  CAS  Google Scholar 

  145. O’Brien B, Zafar H, Ibrahim A, Zafar J, Sharif F. Coronary stent materials and coatings: a technology and performance update. Ann Biomed Eng. 2016;44(2):523–35.

    Article  PubMed  Google Scholar 

  146. Meadows TA, Bhatt DL. Clinical aspects of platelet inhibitors and thrombus formation. Circ Res. 2007;100(9):1261–75.

    Article  CAS  PubMed  Google Scholar 

  147. Kolandaivelu K, Swaminathan R, Gibson WJ, Kolachalama VB, Nguyen-Ehrenreich KL, Giddings VL, Coleman L, Wong GK, Edelman ER. Stent thrombogenicity early in high-risk interventional settings is driven by stent design and deployment and protected by polymer-drug coatings. Circulation. 2011;123(13):1400–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Liu J, Li M, Lu H, Qiao W, Xi D, Luo T, Xiong H, Guo Z. Effects of probucol on restenosis after percutaneous coronary intervention: a systematic review and meta-analysis. PLoS ONE. 2015;10(4):e0124021–e0124021.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Okada T, Yamamoto H, Okimoto T, Otsuka M, Ishibashi K, Dohi Y, Fujii T, Tadehara F, Kurisu S, Hayashi Y, Kihara IY. Coronary Atherosclerosis Reduction Project, Beneficial effects of valsartan on target lesion revascularization after percutaneous coronary interventions with bare-metal stents. Circ J. 2011;75(7):1641–8.

    Article  CAS  PubMed  Google Scholar 

  150. Trabattoni D, Bartorelli AL. Late occlusive in-stent restenosis of a bare-metal stent presenting with ST-elevation anterior MI: is restenosis better than a late stent thrombosis? Int J Cardiol. 2009;135(2):e65–7.

    Article  PubMed  Google Scholar 

  151. Chen M, Osaki S, Zamora PO. Biological response of stainless steel surface modified by N2O/O2 glow discharge plasma. Appl Surf Sci. 2009;255(16):7257–62.

    Article  CAS  Google Scholar 

  152. Wiviott SD, Braunwald E, McCabe CH, Horvath I, Keltai M, Herrman JP, Van de Werf F, Downey WE, Scirica BM, Murphy SA, Antman EM. Intensive oral antiplatelet therapy for reduction of ischaemic events including stent thrombosis in patients with acute coronary syndromes treated with percutaneous coronary intervention and stenting in the TRITON-TIMI 38 trial: a subanalysis of a randomised trial. Lancet. 2008;371(9621):1353–63.

    Article  CAS  PubMed  Google Scholar 

  153. Hunter TB, Taljanovic MS. Glossary of medical devices and procedures: abbreviations, acronyms, and definitions. Radiographics. 2003;23(1):195–213.

    Article  PubMed  Google Scholar 

  154. Curry TS, Dowdey JE, Murry RC, Cameron J. Christensen’s Introduction to the physics of diagnostic radiology. Am J Phys. 1986;54(4):383–383.

    Article  Google Scholar 

  155. Shrivastava S, A.S.M. International. Medical device materials: proceedings from the Materials & Processes for Medical Devices Conference 2003, 8-10 September 2003, Anaheim. ASM International, Materials Park, 2004. 

  156. Edelman ER, Seifert P, Groothuis A, Morss A, Bornstein D, Rogers C. Gold-coated NIR stents in porcine coronary arteries. Circulation. 2001;103(3):429–34.

    Article  CAS  PubMed  Google Scholar 

  157. Kastrati A, Schomig A, Dirschinger J, Mehilli J, von Welser N, Pache J, Schuhlen H, Schilling T, Schmitt C, Neumann FJ. Increased risk of restenosis after placement of gold-coated stents: results of a randomized trial comparing gold-coated with uncoated steel stents in patients with coronary artery disease. Circulation. 2000;101(21):2478–83.

    Article  CAS  PubMed  Google Scholar 

  158. Kereiakes DJ, Cox DA, Hermiller JB, Midei MG, Bachinsky WB, Nukta ED, Leon MB, Fink S, Marin L, Lansky AJ. Usefulness of a cobalt chromium coronary stent alloy. Am J Cardiol. 2003;92(4):463–6.

    Article  CAS  PubMed  Google Scholar 

  159. Hehrlein C, Schorch B, Kress N, Arab A, von zur Mühlen C, Bode C, Epting T, Haberstroh J, Mey L, Schwarzbach H, Kinscherf R, Stachniss V, Schiestel S, Kovacs A, Fischer H, Nennig E. Zn-alloy provides a novel platform for mechanically stable bioresorbable vascular stents. PLoS One. 2019;14(1):e0209111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Ormiston JA, Webster MWI, Armstrong G. First-in-human implantation of a fully bioabsorbable drug-eluting stent: the BVS poly-L-lactic acid everolimus-eluting coronary stent. Catheter Cardiovasc Interv. 2007;69(1):128–31.

    Article  PubMed  Google Scholar 

  161. Nayak SM. MRI: basic principles and applications. Radiology. 1996;200(1):142–142.

    Article  Google Scholar 

  162. Rutledge JM, Vick Iii GW, Mullins CE, Grifka RG. Safety of magnetic resonance imaging immediately following Palmaz stent implant: a report of three cases. Catheter Cardiovasc Interv. 2001;53(4):519–23.

    Article  CAS  PubMed  Google Scholar 

  163. Syed MA, Carlson K, Murphy M, Ingkanisorn WP, Rhoads KL, Arai AE. Long-term safety of cardiac magnetic resonance imaging performed in the first few days after bare-metal stent implantation. J Magn Reson Imaging. 2006;24(5):1056–61.

    Article  PubMed  Google Scholar 

  164. Schenck JF. The role of magnetic susceptibility in magnetic resonance imaging: MRI magnetic compatibility of the first and second kinds. Med Phys. 1996;23(6):815–50.

    Article  CAS  PubMed  Google Scholar 

  165. Cano ME, Cordova-Fraga T, Sosa M, Bernal-Alvarado J, Baffa O. Understanding the magnetic susceptibility measurements by using an analytical scale. Eur J Phys. 2008;29(2):345–54.

    Article  CAS  Google Scholar 

  166. Abizaid A, Carrié D, Frey N, Lutz M, Weber-Albers J, Dudek D, Chevalier B, Weng S-C, Costa RA, Anderson J, Stone GW. 6-month clinical and angiographic outcomes of a novel radiopaque sirolimus-eluting bioresorbable vascular scaffold: the FANTOM II Study. JACC: Cardiovasc Interv. 2017;10(18):1832–8.

    Google Scholar 

  167. Pugliese F, Cademartiri F, van Mieghem C, Meijboom WB, Malagutti P, Mollet NRA, Martinoli C, de Feyter PJ, Krestin GP. Multidetector CT for visualization of coronary stents. Radiographics. 2006;26(3):887–904.

    Article  PubMed  Google Scholar 

  168. Waksman R, Pakala R, Kuchulakanti PK, Baffour R, Hellinga D, Seabron R, Tio FO, Wittchow E, Hartwig S, Harder C, Rohde R, Heublein B, Andreae A, Waldmann K-H, Haverich A. Safety and efficacy of bioabsorbable magnesium alloy stents in porcine coronary arteries. Catheter Cardiovasc Interv. 2006;68(4):607–17.

    Article  PubMed  Google Scholar 

  169. Hug J, Nagel E, Bornstedt A, Schnackenburg B, Oswald H, Fleck E. Coronary arterial stents: safety and artifacts during MR imaging. Radiology. 2000;216(3):781–7.

    Article  CAS  PubMed  Google Scholar 

  170. Li XM, Li HZ, Wang SP, Huang HM, Huang HH, Ai HJ, Xu J. MRI-compatible Nb-60Ta-2Zr alloy used for vascular stents: haemocompatibility and its correlation with protein adsorption, Materials science & engineering. C, Materials for biological applications. 2014;42:385–95.

    Article  CAS  Google Scholar 

  171. Guo Y, Duan W, Ma C, Jiang C, Xie Y, Hao H, Wang R, Li L. Biocompatibility and magnetic resonance imaging characteristics of carbon nanotube yarn neural electrodes in a rat model. Biomed Eng Online. 2015;14(1):118.

    Article  PubMed  PubMed Central  Google Scholar 

  172. Li HF, Zhou FY, Li L, Zheng YF. Design and development of novel MRI compatible zirconium- ruthenium alloys with ultralow magnetic susceptibility. Sci Rep. 2016;6:24414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Guo S, Zhang J, Shang Y, Zhang J, Meng Q, Cheng X, Zhao X. A novel metastable β-type Zr-12Nb-4Sn alloy with low Young’s modulus and low magnetic susceptibility. J Alloy Compd. 2018;745:234–9.

    Article  CAS  Google Scholar 

  174. Lopič N, Jelen A, Vrtnik S, Jagličić Z, Wencka M, Starc R, Blinc A, Dolinšek J. Quantitative determination of magnetic force on a coronary stent in MRI. J Magn Reson Imaging. 2013;37(2):391–7.

    Article  PubMed  Google Scholar 

  175. Arbustini E, Favalli V, Narula J. Functionally incomplete re-endothelialization of stents and neoatherosclerosis. JACC: Cardiovasc Interv. 2017;10(23):2388.

    Google Scholar 

  176. Gareri C, De Rosa S, Indolfi C. MicroRNAs for restenosis and thrombosis after vascular injury. Circ Res. 2016;118(7):1170–84.

    Article  CAS  PubMed  Google Scholar 

  177. Hoare D, Bussooa A, Neale S, Mirzai N, Mercer J. The future of cardiovascular stents: bioresorbable and integrated biosensor technology. Advanced Science. 2019;6(20):1900856.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Maor E, Eleid Mackram F, Gulati R, Lerman A, Sandhu Gurpreet S. Current and future use of robotic devices to perform percutaneous coronary interventions: a review. J Am Heart Assoc. 2017;6(7):e006239.

    Article  PubMed  PubMed Central  Google Scholar 

  179. Fagogenis G, Mencattelli M, Machaidze Z, Rosa B, Price K, Wu F, Weixler V, Saeed M, Mayer JE, Dupont PE. Autonomous robotic intracardiac catheter navigation using haptic vision. Sci Robot. 2019;4(29):eaaw1977.

    Article  PubMed  PubMed Central  Google Scholar 

  180. Grist TM. The next chapter in MRI: back to the future? Radiology. 2019;293(2):394–5.

    Article  PubMed  Google Scholar 

Download references

Funding

JV would like to acknowledge the funding received from Council of Scientific and Industrial Research (CSIR), India, under Direct-SRF scheme (Award No.: 09/844(0108)/2020-EMR-I).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jithin Vishnu or Geetha Manivasagam.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

The original online version of this article was revised: The name of the author K. G. Prashanth has been corrected.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vishnu, J., Manivasagam, G., Mantovani, D. et al. Balloon expandable coronary stent materials: a systematic review focused on clinical success. In vitro models 1, 151–175 (2022). https://doi.org/10.1007/s44164-022-00009-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44164-022-00009-w

Keywords

Navigation