Skip to main content
Log in

Machine learning for the diagnosis of acute coronary syndrome using a 12-lead ECG: a systematic review

  • Original Research
  • Published:
Canadian Journal of Emergency Medicine Aims and scope Submit manuscript

Abstract

Objectives

Prompt diagnosis of acute coronary syndrome (ACS) using a 12-lead electrocardiogram (ECG) is a critical task for emergency physicians. While computerized algorithms for ECG interpretation are limited in their accuracy, machine learning (ML) models have shown promise in several areas of clinical medicine. We performed a systematic review to compare the performance of ML-based ECG analysis to clinician or non-ML computerized ECG interpretation in the diagnosis of ACS for emergency department (ED) or prehospital patients.

Methods

We searched Medline, Embase, Cochrane Central, and CINAHL databases from inception to May 18, 2022. We included studies that compared ML algorithms to either clinicians or non-ML based software in their ability to diagnose ACS using only a 12-lead ECG, in adult patients experiencing chest pain or symptoms concerning for ACS in the ED or prehospital setting. We used QUADAS-2 for risk of bias assessment. Prospero registration CRD42021264765.

Results

Our search yielded 1062 abstracts. 10 studies met inclusion criteria. Five model types were tested, including neural networks, random forest, and gradient boosting. In five studies with complete performance data, ML models were more sensitive but less specific (sensitivity range 0.59–0.98, specificity range 0.44–0.95) than clinicians (sensitivity range 0.22–0.93, specificity range 0.63–0.98) in diagnosing ACS. In four studies that reported it, ML models had better discrimination (area under ROC curve range 0.79–0.98) than clinicians (area under ROC curve 0.67–0.78). Heterogeneity in both methodology and reporting methods precluded a meta-analysis. Several studies had high risk of bias due to patient selection, lack of external validation, and unreliable reference standards for ACS diagnosis.

Conclusions

ML models have overall higher discrimination and sensitivity but lower specificity than clinicians and non-ML software in ECG interpretation for the diagnosis of ACS. ML-based ECG interpretation could potentially serve a role as a “safety net”, alerting emergency care providers to a missed acute MI when it has not been diagnosed. More rigorous primary research is needed to definitively demonstrate the ability of ML to outperform clinicians at ECG interpretation.

Résumé

Objectifs

Le diagnostic rapide du syndrome coronarien aigu (SCA) à l’aide d’un électrocardiogramme à 12 dérivations (ECG) est une tâche essentielle pour les urgentologues. Bien que la précision des algorithmes informatisés pour l’interprétation de l’ECG soit limitée, les modèles d’apprentissage automatique (ML) se sont révélés prometteurs dans plusieurs domaines de la médecine clinique. Nous avons effectué une revue systématique pour comparer la performance de l’analyse ECG basée sur le ML à l’interprétation ECG informatisée clinicienne ou non-ML dans le diagnostic du SCA pour les urgences (ED) ou les patients préhospitaliers.

Méthodes

Nous avons effectué des recherches dans les bases de données Medline, Embase, Cochrane Central et CINAHL de la création au 18 mai 2022. Nous avons inclus des études qui comparaient les algorithmes de ML à des cliniciens ou à des logiciels non basés sur ML dans leur capacité à diagnostiquer le SCA en utilisant uniquement un ECG à 12 dérivations, chez des patients adultes présentant des douleurs thoraciques ou des symptômes concernant le SCA dans le cadre de l’urgence ou préhospitalier. Nous avons utilisé QUADAS-2 pour l’évaluation du risque de biais. Prospero registration CRD42021264765.

Résultats

Notre recherche a donné 1062 résumés. 10 études satisfaisaient aux critères d’inclusion. Cinq types de modèles ont été testés, dont les réseaux neuronaux, la forêt aléatoire et le gradient boosting. Dans cinq études avec des données de performance complètes, les modèles de ML étaient plus sensibles mais moins spécifiques (plage de sensibilité 0,59-0,98, plage de spécificité 0,44-0,95) que les cliniciens (plage de sensibilité 0,22-0,93, plage de spécificité 0,63-0,98) dans le diagnostic du SCA. Dans quatre études qui l’ont rapporté, les modèles de ML avaient une meilleure discrimination (zone sous la courbe ROC plage 0,79-0,98) que les cliniciens (zone sous la courbe ROC 0,67-0,78). L’hétérogénéité de la méthodologie et des méthodes de déclaration a empêché une méta-analyse. Plusieurs études présentaient un risque élevé de biais en raison de la sélection des patients, du manque de validation externe et de normes de référence peu fiables pour le diagnostic du SCA.

Conclusions

Les modèles de ML ont globalement une discrimination et une sensibilité plus élevées mais une spécificité plus faible que les cliniciens et les logiciels non-ML dans l’interprétation de l’ECG pour le diagnostic du SCA. L’interprétation de l’ECG basée sur le ML pourrait servir de « filet de sécurité », alertant les fournisseurs de soins d’urgence d’une IM aiguë manquée lorsqu’elle n’a pas été diagnostiquée. Des recherches primaires plus rigoureuses sont nécessaires pour démontrer définitivement la capacité du ML à surpasser les cliniciens lors de l’interprétation de l’ECG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article [and its supplementary information files].

References

  1. Schull MJ, Vermeulen MJ, Stukel TA. The risk of missed diagnosis of acute myocardial infarction associated with emergency department volume. Ann Emerg Med. 2006;48(6):647–55.

    Article  PubMed  Google Scholar 

  2. Pope JH, Aufderheide TP, Ruthazer R, Woolard RH, Feldman JA, Beshansky JR, et al. Missed diagnoses of acute cardiac ischemia in the emergency department. N Engl J Med. 2000;342(16):1163–70.

    Article  CAS  PubMed  Google Scholar 

  3. Cook DA, Oh SY, Pusic MV. Accuracy of physicians’ electrocardiogram interpretations: a systematic review and meta-analysis. JAMA Intern Med. 2020;180(11):1461–71.

    Article  PubMed  Google Scholar 

  4. Schläpfer J, Wellens HJ. Computer-interpreted electrocardiograms: benefits and limitations. J Am Coll Cardiol. 2017;70(9):1183–92.

    Article  PubMed  Google Scholar 

  5. Kareemi H, Vaillancourt C, Rosenberg H, Fournier K, Yadav K. Machine learning versus usual care for diagnostic and prognostic prediction in the emergency department: a systematic review. Acad Emerg Med Off J Soc Acad Emerg Med. 2021;28(2):184–96.

    Article  Google Scholar 

  6. Shafaf N, Malek H. Applications of machine learning approaches in emergency medicine; a review article. Arch Acad Emerg Med. 2019;7(1):34.

    PubMed  PubMed Central  Google Scholar 

  7. Levin S, Toerper M, Hamrock E, Hinson JS, Barnes S, Gardner H, et al. Machine-learning-based electronic triage more accurately differentiates patients with respect to clinical outcomes compared with the emergency severity index. Ann Emerg Med. 2018;71(5):565-574.e2.

    Article  PubMed  Google Scholar 

  8. Ij H. Statistics versus machine learning. Nat Methods. 2018;15(4):233.

    Article  Google Scholar 

  9. Ley C, Martin RK, Pareek A, Groll A, Seil R, Tischer T. Machine learning and conventional statistics: making sense of the differences. Knee Surg Sports Traumatol Arthrosc. 2022;30(3):753–7.

    Article  PubMed  Google Scholar 

  10. Deo RC. Machine learning in medicine. Circulation. 2015;132(20):1920–30.

    Article  PubMed  PubMed Central  Google Scholar 

  11. MacEachern SJ, Forkert ND. Machine learning for precision medicine. Genome. 2021;64(4):416–25.

    Article  PubMed  Google Scholar 

  12. Forberg JL, Green M, Björk J, Ohlsson M, Edenbrandt L, Ohlin H, et al. In search of the best method to predict acute coronary syndrome using only the electrocardiogram from the emergency department. J Electrocardiol. 2009;42(1):58–63.

    Article  PubMed  Google Scholar 

  13. Green M, Björk J, Forberg J, Ekelund U, Edenbrandt L, Ohlsson M. Comparison between neural networks and multiple logistic regression to predict acute coronary syndrome in the emergency room. Artif Intell Med. 2006;38(3):305–18.

    Article  PubMed  Google Scholar 

  14. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;29(372): n71.

    Article  Google Scholar 

  15. McGowan J, Sampson M, Salzwedel DM, Cogo E, Foerster V, Lefebvre C. PRESS peer review of electronic search strategies: 2015 guideline statement. J Clin Epidemiol. 2016;75:40–6.

    Article  PubMed  Google Scholar 

  16. Thygesen K, Alpert JS, Jaffe AS, Chaitman BR, Bax JJ, Morrow DA, et al. Fourth universal definition of myocardial infarction (2018). Circulation. 2018;138(20):e618–51.

    Article  PubMed  Google Scholar 

  17. Whiting PF, Rutjes AWS, Westwood ME, Mallett S, Deeks JJ, Reitsma JB, et al. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med. 2011;155(8):529–36.

    Article  PubMed  Google Scholar 

  18. Olsson SE, Ohlsson M, Ohlin H, Edenbrandt L. Neural networks—a diagnostic tool in acute myocardial infarction with concomitant left bundle branch block. Clin Physiol Funct Imaging. 2002;22(4):295–9.

    Article  PubMed  Google Scholar 

  19. Liu WC, Lin CS, Tsai CS, Tsao TP, Cheng CC, Liou JT, et al. A deep learning algorithm for detecting acute myocardial infarction. EuroIntervention. 2021;17(9):773–865.

    Article  Google Scholar 

  20. Heden B, Ohlin H, Rittner R, Edenbrandt L. Acute myocardial infarction detected in the 12-lead ECG by artificial neural networks. Circulation. 1997;96(6):1798–802.

    Article  CAS  PubMed  Google Scholar 

  21. Kim D, Hwang JE, Cho Y, Cho HW, Lee W, Lee JH, et al. A retrospective clinical evaluation of an artificial intelligence screening method for early detection of STEMI in the emergency department. J Korean Med Sci. 2022;37(10):e81.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ohlsson M, Ohlin H, Wallerstedt SM, Edenbrandt L. Usefulness of serial electrocardiograms for diagnosis of acute myocardial infarction. Am J Cardiol. 2001;88(5):478–81.

    Article  CAS  PubMed  Google Scholar 

  23. Bouzid Z, Faramand Z, Gregg RE, Frisch SO, Martin-Gill C, Saba S, et al. In search of an optimal subset of ecg features to augment the diagnosis of acute coronary syndrome at the emergency department. J Am Heart Assoc. 2021;10(3):1–13.

    Article  Google Scholar 

  24. Bouzid Z, Faramand Z, Gregg RE, Helman S, Martin-Gill C, Saba S, et al. Novel ECG features and machine learning to optimize culprit lesion detection in patients with suspected acute coronary syndrome. J Electrocardiol. 2021. https://doi.org/10.1016/j.jelectrocard.2021.07.012.

  25. Al-Zaiti S, Besomi L, Bouzid Z, Faramand Z, Frisch S, Martin-Gill C, et al. Machine learning-based prediction of acute coronary syndrome using only the pre-hospital 12-lead electrocardiogram. Nat Commun. 2020;11(1):3966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Forberg JL, Khoshnood A, Green M, Ohlsson M, Bjork J, Jovinge S, et al. An artificial neural network to safely reduce the number of ambulance ECGs transmitted for physician assessment in a system with prehospital detection of ST elevation myocardial infarction. Scand J Trauma Resusc Emerg Med. 2012;20:8.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Al Hinai G, Jammoul S, Vajihi Z, Afilalo J. Deep learning analysis of resting electrocardiograms for the detection of myocardial dysfunction, hypertrophy, and ischaemia: a systematic review. Eur Heart J Digit Health. 2021;2(3):416–23.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Xiong P, Lee SMY, Chan G. Deep learning for detecting and locating myocardial infarction by electrocardiogram: a literature review. Front Cardiovasc Med. 2022;25(9): 860032.

    Article  Google Scholar 

  29. Wolff RF, Moons KGM, Riley RD, Whiting PF, Westwood M, Collins GS, et al. PROBAST: a tool to assess the risk of bias and applicability of prediction model studies. Ann Intern Med. 2019;170(1):51–8.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Ms. Sarah Visintini peer reviewed our Medline search strategy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Max Zworth.

Additional information

Communicated by Daniel K. Ting.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 20 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zworth, M., Kareemi, H., Boroumand, S. et al. Machine learning for the diagnosis of acute coronary syndrome using a 12-lead ECG: a systematic review. Can J Emerg Med 25, 818–827 (2023). https://doi.org/10.1007/s43678-023-00572-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43678-023-00572-5

Keywords

Mots clés

Navigation