Skip to main content
Log in

Riesz bases by replacement

  • Original Article
  • Published:
Sampling Theory, Signal Processing, and Data Analysis Aims and scope Submit manuscript


In this paper we provide a method for constructing new Riesz bases on separable Hilbert spaces and we use it to prove sufficient conditions for the existence of exponential Riesz bases on domains of \({ {\mathbb {R}} }^d\). We also apply our results to the construction of weighted exponential Riesz bases on [0, 1].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  1. Adcock, B., Gataric, M., Hansen, A.C.: Weighted frames of exponentials and stable recovery of multidimensional functions from nonuniform Fourier samples. Appl. Comput. Harmon. Anal. 42(3), 508–535 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  2. Anderson, N., Best, G.: A Gerschgorin–Rayleigh inequality for the eigenvalues of Hermitian matrices. Linear Multilinear Algebra 6(3), 219–222 (1978/1979)

  3. Avdonin, S.A., Ivanov, S.A.: Families of Exponentials. The Method of Moments in Controllability Problems for Distributed Parameter Systems. Cambridge University Press, New York (1995)

    MATH  Google Scholar 

  4. Bemrose, T., Casazza, P.G., Gröchenig, K., Lammers, M.C., Lynch, R.G.: Weaving frames. Oper. Matrices 10, 1093–1116 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bhandari, A., Mukherjee, S.: Characterizations of woven frames. Int. J. Wavelets Multiresolut. Inf. Process. 18(5), 13 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brualdi, R., Mellendorf, S.: Regions in the complex plane containing the eigenvalues of a matrix. Am. Math. Mon. 101(10), 975–985 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  7. Casazza, P., Christensen, O.: Approximation of the inverse frame operator and applications to Gabor frames. J. Approx. Theory 103(2), 338–356 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Casazza, P., De Carli, L., Tran, T.: Piecewise scalable frames. arXiv:2203.12678 (2022)

  9. Casazza, P., Lynch, R.: Weaving properties of Hilbert space frames. In: Computer Science 2015 International Conference on Sampling Theory and Applications (SampTA) (2015)

  10. Christensen, O.: An Introduction to Frames and Riesz Bases, 2nd edn. Birkhäuser, Basel (2016)

    MATH  Google Scholar 

  11. De Carli, L., Samad, S.G.: One-parameter groups and discrete Hilbert transform. Can. Math. Bull. 59, 497–507 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Farid, F.O., Lancaster, P.: Spectral properties of diagonally dominant infinite matrices. II. Linear Algebra Appl. 143, 7–17 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  13. Grochenig, K., Malinnikova, E.: Phase space localization of Riesz bases for \(L^2({\mathbb{R}}^d)\). Revista Matematica Iberoamericana 29(1), 115–134 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Guliyeva, F.A., Sadigova, S.R.: Bases of the perturbed system of exponents in generalized weighted Lebesgue space with a general weigh. Afr. Mat. 28, 781–791 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Heil, C.: A Basis Theory Primer, Appl. Num. Harm. Analysis. Birkhäuser, Basel (2011)

  16. Horn, R.: Matrix Analysis, 2nd edn. Cambridge Univ.Press, Cambridge (2012)

    Book  Google Scholar 

  17. Johnson, C.R.: A Gersgorin-type lower bound for the smallest singular value. Linear Algebra Appl. 112, 1–7 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kazaryan, K.S., Lizorkin, P.I.: Multipliers, bases and unconditional bases of the weighted spaces B and SB. (Russian) Translated in Proc. Steklov Inst. Math. 1990, no. 3, 111–130. Studies in the theory of differentiable functions of several variables and its applications, 13 (Russian)

  19. Kozma, G., Nitzan, S., Olevskii, A.: A set with no Riesz basis of exponentials. arXiv:2110.02090 (2021)

  20. Olevskii, A., Ulanovskii, A.: Functions with disconnected spectrum: sampling, interpolation, translates University Lecture Series, vol. 65. American Mathematical Society, Providence (2016)

  21. Pavlov, B.S.: Basicity of exponential system and Muckenhoupt condition Doklady. Akad. Nauk. SSSR. 247(1), 37–40 (Russian). English translation in Soviet Math. Dokl. 20, 655–659 (1979)

  22. Qi, L.Q.: Some simple estimates for singular values of a matrix. Linear Algebra Appl. 56, 105–119 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  23. Shivakumar, P.N., Sivakumar, K.C.: A review of infinite matrices and their applications. Linear Algebra Appl. 430, 976–998 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Thompson, R.C.: Principal submatrices IX: interlacing inequalities for singular values of submatrices. Linear Algebra Appl. 5, 1–12 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  25. Vashisht, L.K., Deepshikha: On continuous weaving frames. Adv. Pure Appl. Math. 8(1), 15–31 (2017)

  26. Young, R.M.: An Introduction to Nonharmonic Fourier Series. Revised first edition. Academic Press, Inc., San Diego (2001)

  27. Xu, Y., Leng, J.: New inequalities for weaving frames in Hilbert spaces. J. Inequal. Appl. 188, 15 (2021)

    MathSciNet  MATH  Google Scholar 

Download references


We wish to thank the anonymous referees for valuable suggestions, and for pointing out the connection between our results and those in [4]

Author information

Authors and Affiliations


Corresponding author

Correspondence to Laura De Carli.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Communicated by Deguang Han.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Carli, L., Edward, J. Riesz bases by replacement. Sampl. Theory Signal Process. Data Anal. 20, 9 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI:


Mathematics Subject Classification