Skip to main content
Log in

Glowing wonders: exploring the diversity and ecological significance of bioluminescent organisms in Brazil

  • Reviews
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Bioluminescence, the emission of light by living organisms, is a captivating and widespread phenomenon with diverse ecological functions. This comprehensive review explores the biodiversity, mechanisms, ecological roles, and conservation challenges of bioluminescent organisms in Brazil, a country known for its vast and diverse ecosystems. From the enchanting glow of fireflies and glow-in-the-dark mushrooms to the mesmerizing displays of marine dinoflagellates and cnidarians, Brazil showcases a remarkable array of bioluminescent species. Understanding the biochemical mechanisms and enzymes involved in bioluminescence enhances our knowledge of their evolutionary adaptations and ecological functions. However, habitat loss, climate change, and photopollution pose significant threats to these bioluminescent organisms. Conservation measures, interdisciplinary collaborations, and responsible lighting practices are crucial for their survival. Future research should focus on identifying endemic species, studying environmental factors influencing bioluminescence, and developing effective conservation strategies. Through interdisciplinary collaborations, advanced technologies, and increased funding, Brazil can unravel the mysteries of its bioluminescent biodiversity, drive scientific advancements, and ensure the long-term preservation of these captivating organisms.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data used in this work are available in the supplementary material.

References

  1. Herring, P. J. (1987). Systematic distribution of bioluminescence in living organisms. Journal of Bioluminescence and Chemiluminescence, 1(3), 147–163.

    CAS  PubMed  Google Scholar 

  2. Viviani, V. R. (2002). The origin, diversity, and structure function relationships of insect luciferases. Cellular and Molecular Life Sciences CMLS, 59, 1833–1850.

    CAS  PubMed  Google Scholar 

  3. Viviani, V. R. (2023). Looking into luciferin. Nature Chemistry, 15(5), 742–742.

    CAS  PubMed  Google Scholar 

  4. Widder, E. A. (2001). Marine bioluminescence. Why do so many animals in the open ocean make light? BioScience, 1(1), 9.

    Google Scholar 

  5. Haddock, S. H., Moline, M. A., & Case, J. F. (2010). Bioluminescence in the sea. Annual Review of Marine Science, 2, 443–493.

    PubMed  Google Scholar 

  6. Widder, E. A. (2010). Bioluminescence in the ocean: origins of biological, chemical, and ecological diversity. Science, 328(5979), 704–708.

    CAS  PubMed  Google Scholar 

  7. Herring, P. J. (1977). Bioluminescence of marine organisms. Nature, 267(5614), 788–793.

    Google Scholar 

  8. Desjardin, D. E., Oliveira, A. G., & Stevani, C. V. (2008). Fungi bioluminescence revisited. Photochemical & Photobiological Sciences, 7, 170–182.

    CAS  Google Scholar 

  9. Roda, A., Pasini, P., Mirasoli, M., Michelini, E., & Guardigli, M. (2004). Biotechnological applications of bioluminescence and chemiluminescence. Trends in Biotechnology, 22(6), 295–303.

    CAS  PubMed  Google Scholar 

  10. Mezzanotte, L., van’t Root, M., Karatas, H., Goun, E. A., & Löwik, C. W. (2017). In vivo molecular bioluminescence imaging: new tools and applications. Trends in b\Biotechnology, 35(7), 640–652.

    CAS  Google Scholar 

  11. Coutinho, M. C. L., Teixeira, V. L., & Santos, C. S. G. (2018). A review of “Polychaeta” chemicals and their possible ecological role. Journal of Chemical Ecology, 44, 72–94.

    CAS  PubMed  Google Scholar 

  12. Martini, S., & Francis, W. R. (2020). The dark ocean is full of lights. Frontiers for Young Minds, 8, 44.

    Google Scholar 

  13. Orrico, C. M., Moline, M. A., Robbins, I., Zelenke, B., Barnard, A. H., Strubhar, W., & Moore, C. (2009). A new tool for monitoring ecosystem dynamics in coastal environments: Long-term use and servicing requirements of the commercial Underwater Bioluminescence Assessment Tool (U-BAT). In: OCEANS 2009 (pp. 1–7). IEEE.

  14. Weinstein, P., Delean, S., Wood, T., & Austin, A. D. (2016). Bioluminescence in the ghost fungus Omphalotus nidiformis does not attract potential spore dispersing insects. IMA fungus, 7(2), 229–234.

    PubMed  PubMed Central  Google Scholar 

  15. Bechara, E. J., & Stevani, C. V. (2018). Brazilian bioluminescent beetles: reflections on catching glimpses of light in the Atlantic forest and Cerrado. Anais da Academia Brasileira de Ciências, 90, 663–679.

    CAS  PubMed  Google Scholar 

  16. Costa, C., & Vanin, S. A. (2010). Coleoptera larval fauna associated with termite nests (Isoptera) with emphasis on the “bioluminescent termite nests” from Central Brazil. Psyche, 2010, 1–12.

    Google Scholar 

  17. Desjardin, D. E., Perry, B. A., Lodge, D. J., Stevani, C. V., & Nagasawa, E. (2010). Luminescent Mycena: new and noteworthy species. Mycologia, 102(2), 459–477.

    PubMed  Google Scholar 

  18. Mirza, J. D., Migotto, A. E., Yampolsky, I. V., de Moraes, G. V., Tsarkova, A. S., & Oliveira, A. G. (2020). Chaetopterus variopedatus bioluminescence: A review of light emission within a species complex. Photochemistry and Photobiology, 96(4), 768–778.

    CAS  PubMed  Google Scholar 

  19. Moraes, G. V., Hannon, M. C., Soares, D. M., Stevani, C. V., Schulze, A., & Oliveira, A. G. (2021). Bioluminescence in polynoid scale worms (Annelida: Polynoidae). Frontiers in Marine Science, 8, 643197.

    Google Scholar 

  20. Gabriel, G. V. M., Yasuno, R., Mitani, Y., Ohmiya, Y., & Viviani, V. R. (2019). Novel application of Macrolampis sp2 firefly luciferase for intracellular pH-biosensing in mammalian cells. Photochemical & Photobiological Sciences, 18, 1212–1217.

    CAS  Google Scholar 

  21. Stevani, C. V., Oliveira, A. G., Mendes, L. F., Ventura, F. F., Waldenmaier, H. E., Carvalho, R. P., & Pereira, T. A. (2013). Current status of research on fungal bioluminescence: biochemistry and prospects for ecotoxicological application. Photochemistry and Photobiology, 89(6), 1318–1326.

    CAS  PubMed  Google Scholar 

  22. Viviani, V. R., Arnoldi, F. G. C., Neto, A. S., Oehlmeyer, T. L., Bechara, E. J. H., & Ohmiya, Y. (2008). The structural origin and biological function of pH-sensitivity in firefly luciferases. Photochemical & Photobiological Sciences, 7, 159–169.

    CAS  Google Scholar 

  23. Viviani, V. R., Pelentir, G. F., & Bevilaqua, V. R. (2022). Bioluminescence color-tuning firefly luciferases: engineering and prospects for real-time intracellular pH Imaging and heavy metal biosensing. Biosensors, 12(6), 400.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Amaral, D. T., Prado, R. A., & Viviani, V. R. (2012). Luciferase from Fulgeochlizus bruchi (Coleoptera: Elateridae), a Brazilian click-beetle with a single abdominal lantern: molecular evolution, biological function and comparison with other click-beetle luciferases. Photochemical & Photobiological Sciences, 11, 1259–1267.

    CAS  Google Scholar 

  25. Amaral, D. T., Oliveira, G., Silva, J. R., & Viviani, V. R. (2016). A new orange emitting luciferase from the Southern-Amazon Pyrophorus angustus (Coleoptera: Elateridae) click-beetle: structure and bioluminescence color relationship, evolutional and ecological considerations. Photochemical & Photobiological Sciences, 15, 1148–1154.

    CAS  Google Scholar 

  26. Lall, A. B., Cronin, T. W., Carvalho, A. A., de Souza, J. M., Barros, M. P., Stevani, C. V., & Hill, A. A. (2010). Vision in click beetles (Coleoptera: Elateridae): pigments and spectral correspondence between visual sensitivity and species bioluminescence emission. Journal of Comparative Physiology A, 196, 629–638.

    Google Scholar 

  27. Lall, A. B., Viviani, V. R., & Ventura, D. F. (2023). Spectral tuning of bioluminescence and visual sensitivity in males of Brazilian firefly species inhabiting dim light environments (Coleoptera: Elateroidea: Lampyridae). Journal of Experimental Zoology Part A Ecological and Integrative Physiology, 339(1), 37–45.

    CAS  PubMed  Google Scholar 

  28. Silveira, L. F., Khattar, G., Vaz, S., Wilson, V. A., Souto, P. M., Mermudes, J. R., & Monteiro, R. F. (2020). Natural history of the fireflies of the Serra dos Órgãos mountain range (Brazil: Rio de Janeiro)–one of the ‘hottest’firefly spots on Earth, with a key to genera (Coleoptera: Lampyridae). Journal of Natural History, 54(5–6), 275–308.

    Google Scholar 

  29. Viviani, V. R. (2001). Fireflies (Coleoptera: Lampyridae) from Southeastern Brazil: habitats, life history, and bioluminescence. Annals of the Entomological Society of America, 94(1), 129–145.

    Google Scholar 

  30. Viviani, V. R., & Santos, R. M. D. (2012). Bioluminescent coleoptera of biological station of Boracéia (Salesópolis, SP, Brazil): diversity, bioluminescence and habitat distribution. Biota Neotropica, 12, 21–34.

    Google Scholar 

  31. Lloyd, J. E. (1973). Fireflies of Melanesia: bioluminescence, mating behavior, and synchronous flashing (Coleoptera: Lampyridae). Environmental Entomology, 2(6), 991–1008.

    Google Scholar 

  32. Hagen, O., Santos, R. M., Schlindwein, M. N., & Viviani, V. R. (2015). Artificial night lighting reduces firefly (Coleoptera: Lampyridae) occurrence in Sorocaba. Brazil. Advances in Entomology, 3(01), 24.

    Google Scholar 

  33. Amaral, D. T., Arnoldi, F. G. C., Rosa, S. P., & Viviani, V. R. (2014). Molecular phylogeny of Neotropical bioluminescent beetles (Coleoptera:Elateroidea) in Southern central Brazil. Luminescence, 29(5), 412–422.

    CAS  PubMed  Google Scholar 

  34. Dias, C. M., Schneider, M. C., Rosa, S. P., Costa, C., & Cella, D. M. (2007). The first cytogenetic report of fireflies (Coleoptera, Lampyridae) from Brazilian fauna. Acta Zoologica, 88(4), 309–316.

    Google Scholar 

  35. Rosa, S. P. (2007). Description of Photuris fulvipes (Blanchard) immatures (Coleoptera, Lampyridae, Photurinae) bionomic aspects under laboratory conditions. Revista Brasileira de Entomologia, 51, 125–130.

    Google Scholar 

  36. Silveira, L. F. L. D., Lima, W., Fonseca, C. R. V. D., & McHugh, J. (2022). Haplocauda, a new genus of fireflies endemic to the Amazon rainforest (Coleoptera: Lampyridae). Insects, 13(1), 58.

    PubMed  PubMed Central  Google Scholar 

  37. Viviani, V. R., Amaral, D., Prado, R., & Arnoldi, F. G. (2011). A new blue-shifted luciferase from the Brazilian Amydetes fanestratus (Coleoptera: Lampyridae) firefly: molecular evolution and structural/functional properties. Photochemical & Photobiological Sciences, 10, 1879–1886.

    CAS  Google Scholar 

  38. Zeballos, L. F., Roza, A. S., Campello-Gonçalves, L., Vaz, S., Da Fonseca, C. R. V., Rivera, S. C., & da Silveira, L. F. L. (2023). Phylogeny of Scissicauda Species, with Eight New Species, including the First Photinini Fireflies with Biflabellate Antennae (Coleoptera: Lampyridae). Diversity, 15(5), 620.

    CAS  Google Scholar 

  39. Campello-Goncalves, L., Souto, P. M., Mermudes, J. R., & Silveira, L. F. (2019). Uanauna gen. nov., a new genus of fireflies endemic to the Brazilian Atlantic forest (Coleoptera: Lampyridae), with key to brazilian genera of Lucidotina. Zootaxa, 4585(1), 59–72.

    Google Scholar 

  40. Ferreira, V. S., Keller, O., Branham, M. A., & Ivie, M. A. (2019). Molecular data support the placement of the enigmatic Cheguevaria as a subfamily of Lampyridae (Insecta: Coleoptera). Zoological Journal of the Linnean Society, 187(4), 1253–1258.

    Google Scholar 

  41. Silveira, L. F., & Mermudes, J. R. (2013). Memoan ciceroi gen. et sp. nov., a remarkable new firefly genus and species from the Atlantic Rainforest (Coleoptera: Lampyridae). Zootaxa, 3640, 79–87.

    PubMed  Google Scholar 

  42. Silveira, L. F. L., & Mermudes, J. R. M. (2014). Ybytyramoan, a new genus of fireflies (Coleoptera: Lampyridae, Lampyrinae, Photinini) endemic to the Brazilian Atlantic Rainforest, with description of three new species. Zootaxa, 3835(3), 325–337.

    PubMed  Google Scholar 

  43. Silveira, L. F., & Mermudes, J. R. (2017). A new tropical montane firefly genus and species, active during winter and endemic to the southeastern Atlantic Rainforest (Coleoptera: Lampyridae). Zootaxa. https://doi.org/10.11646/zootaxa.4221.2.4

    Article  PubMed  Google Scholar 

  44. Silveira, L. F. L., Souto, P. M., & Mermudes, J. R. M. (2018). Four new species of Luciuranus fireflies from the Brazilian Atlantic rainforest (Coleoptera: Lampyridae). Zootaxa, 4413(1), 173–186.

    PubMed  Google Scholar 

  45. Campello, L., Vaz, S., Mermudes, J. R., Ferreira, A. L., & Silveira, L. F. (2022). Comparative morphology and key to Amydetinae genera, with description of three new firefly species (Coleoptera, Lampyridae). ZooKeys, 1114, 131.

    PubMed  PubMed Central  Google Scholar 

  46. Campos, S. V. N., Da Silveira, L. F. L., & Mermudes, J. R. M. (2018). Systematic review of the giant firefly Cratomorphus cossyphinus: sexual dimorphism, immature stages and geographic range (Coleoptera: Lampyridae). Annales Zoologici, 68(1), 57–84. Museum and Institute of Zoology, Polish Academy of Sciences.

    Google Scholar 

  47. Bocakova, M., Campello-Gonçalves, L., & Da Silveira, L. F. L. (2022). Phylogeny of the new subfamily Cladodinae: neotenic fireflies from the Neotropics (Coleoptera: Lampyridae). Zoological Journal of the Linnean Society, 195(4), 1181–1199.

    Google Scholar 

  48. Ferreira, V. S., Keller, O., & Branham, M. A. (2020). Multilocus phylogeny support the nonbioluminescent firefly Chespirito as a new subfamily in the Lampyridae (Coleoptera: Elateroidea). Insect Systematics and Diversity, 4(6), 2.

    Google Scholar 

  49. Riley, W. B., Rosa, S. P., & da Silveira, L. F. L. (2021). A comprehensive review and call for studies on firefly larvae. PeerJ, 9, e12121.

    PubMed  PubMed Central  Google Scholar 

  50. Silveira, L. F. L., Mermudes, J. R. M., & Bocakova, M. (2016). Systematic review of the firefly genus Scissicauda (Coleoptera, Lampyridae, Amydetinae) from Brazil. ZooKeys, 558, 55.

    Google Scholar 

  51. Silveira, L. F., Rosa, S. P., & Mermudes, J. R. (2019). Systematic review of the firefly genus Lucernuta Laporte, 1833 (Coleoptera: Lampyridae). Annales Zoologici, 69(2), 293–314. Museum and Institute of Zoology Polish Academy of Sciences.

    Google Scholar 

  52. Carvalho, M. C., Tomazini, A., Amaral, D. T., Murakami, M. T., & Viviani, V. R. (2020). Luciferase isozymes from the Brazilian Aspisoma lineatum (Lampyridae) firefly: origin of efficient pH-sensitive lantern luciferases from fat body pH-insensitive ancestors. Photochemical & Photobiological Sciences, 19, 1750–1764.

    CAS  Google Scholar 

  53. Moreira, A. C., Amaral, D. T., Gabriel, G. V. M., & Viviani, V. R. (2022). Cloning and molecular properties of a novel luciferase from the Brazilian Bicellonycha lividipennis (Lampyridae: Photurinae) firefly: comparison with other firefly luciferases. Photochemical & Photobiological Sciences, 21(9), 1559–1571.

    CAS  Google Scholar 

  54. Viviani, V. R., Arnoldi, F. G., Brochetto-Braga, M., & Ohmiya, Y. (2004). Cloning and characterization of the cDNA for the Brazilian Cratomorphus distinctus larval firefly luciferase: similarities with European Lampyris noctiluca and Asiatic Pyrocoelia luciferases. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 139(2), 151–156.

    CAS  Google Scholar 

  55. Viviani, V. R., Oehlmeyer, T. L., Arnoldi, F. G. C., & Brochetto-Braga, M. R. (2005). A new firefly luciferase with bimodal spectrum: identification of structural determinants of spectral pH-sensitivity in firefly luciferases. Photochemistry and Photobiology, 81(4), 843–848.

    CAS  PubMed  Google Scholar 

  56. Costa, C. (1968). Gênero Pyrophorus. 2. Redescrição de algumas especies (col., elateridae). Papéis Avulsos de Zoologia, 22, 249–262.

    Google Scholar 

  57. Colepicolo-Neto, P., Bechara, E. J. H., & Costa, C. (1986). Oxygen toxicity aspects in luminescent and non-luminescent elaterid larvae. Insect Biochemistry, 16(2), 381–385.

    CAS  Google Scholar 

  58. Evans, M. E. G. (1972). The jump of the click beetle (Coleoptera, Elateridae)—a preliminary study. Journal of Zoology, 167(3), 319–336.

    Google Scholar 

  59. Ribak, G., & Weihs, D. (2011). Jumping without using legs: The jump of the click-beetles (Elateridae) is morphologically constrained. PLoS ONE, 6(6), e20871.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Viviani, V. R., & Amaral, D. T. (2016). First report of Pyrearinus larvae (Coleoptera: Elateridae) in clayish canga caves and luminous termite mounds in the Amazon Forest with a preliminary molecular-based phylogenetic analysis of the P. pumilus group. Annals of the Entomological Society of America, 109(4), 534–541.

    Google Scholar 

  61. Rosa, S. P., Mariano, R. D. R., Viviani, V. R., & Costa, C. (2020). Morphology of immature stages of Pyrearinus pumilus (Candèze, 1863 (Coleoptera: Elateridae: Pyrophorini): the click beetle responsible for the luminous canga caves in the state of Pará, Brazil. Zootaxa. https://doi.org/10.11646/zootaxa.4778.3.7

    Article  PubMed  Google Scholar 

  62. Arnoldi, F. G., da Silva Neto, A. J., & Viviani, V. R. (2010). Molecular insights on the evolution of the lateral and head lantern luciferases and bioluminescence colors in Mastinocerini railroad-worms (Coleoptera: Phengodidae). Photochemical & Photobiological Sciences, 9, 87–92.

    CAS  Google Scholar 

  63. Viviani, V. R., & Bechara, E. J. (1997). Bioluminescence and biological aspects of Brazilian railroad-worms (Coleoptera: Phengodidae). Annals of the Entomological Society of America, 90(3), 389–398.

    Google Scholar 

  64. Wittmer, W. (1975). The genus Phengodes in the United States (Coleoptera: Phengodidae). The Coleopterists’ Bulletin, 231–250.

  65. Ferreira, V. S. (2015). An annotated catalogue of the type material of Elateroidea Leach, 1815 (Coleoptera) deposited in the Coleoptera collection of the Museum of Zoology of the University of São Paulo, Brazil. Zootaxa, 3937(2), 263–310.

    PubMed  Google Scholar 

  66. Silveira, L. F. L., Roza, A. S., Vaz, S., & Mermudes, J. R. M. (2021). Description and phylogenetic analysis of a new firefly genus from the Atlantic Rainforest, with five new species and new combinations (Coleoptera: Lampyridae: Lampyrinae). Arthropod Systematics & Phylogeny, 79, 115–150.

    Google Scholar 

  67. Roza, A. S., Quintino, H. Y. S., Mermudes, J. R. M., & Silveira, L. F. L. (2017). Akamboja gen. nov., a new genus of railroad-worm beetle endemic to the Atlantic Rainforest, with five new species (Coleoptera: Phengodidae, Mastinocerinae). Zootaxa, 4306(4), 501–523.

    Google Scholar 

  68. Roza, A. S., & Mermudes, J. R. M. (2020). A new genus of railroad-worm beetles from the Atlantic Rainforest from Brazil (Coleoptera: Phengodidae, Mastinocerinae). Papéis Avulsos de Zoologia, 60, e202060-si.

  69. Costa, C., Vanin, S. A., & Colepicolo Neto, P. (1986). Larvae of Neotropical Coleoptera. XIV. First Record of Bioluminescence in the family Staphylinidae (Xantholinini). Revista Brasileira de Entomologia, 30, 101104.

    Google Scholar 

  70. Rosa, S. P. (2010). Second record of bioluminescence in larvae of Xantholinus Dejean (Staphylinidae, Xantholinini) from Brazil. Revista Brasileira de Entomologia, 54, 147–148.

    Google Scholar 

  71. Falaschi, R. L., Amaral, D. T., Santos, I., Domingos, A. H., Johnson, G. A., Martins, A. G., & Stevani, C. V. (2019). Neoceroplatus betaryiensis nov. sp. (Diptera: Keroplatidae) is the first record of a bioluminescent fungus-gnat in South America. Scientific Reports, 9(1), 11291.

    PubMed  PubMed Central  Google Scholar 

  72. Fulton, B. B. (1941). A luminous fly larva with spider traits (Diptera, Mycetophilidae). Annals of the Entomological Society of America, 34(2), 289–302.

    Google Scholar 

  73. Viviani, V. R., Silva, J. R., Amaral, D. T., Bevilaqua, V. R., Abdalla, F. C., Branchini, B. R., & Johnson, C. H. (2020). A new brilliantly blue-emitting luciferin-luciferase system from Orfelia fultoni and Keroplatinae (Diptera). Scientific Reports, 10(1), 9608.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Viviani, V. R., Bevilaqua, V. R., de Souza, D. R., Pelentir, G. F., Kakiuchi, M., & Hirano, T. (2020). A very bright far-red bioluminescence emitting combination based on engineered railroad worm luciferase and 6′-amino-analogs for bioimaging purposes. International Journal of Molecular Sciences, 22(1), 303.

    PubMed  PubMed Central  Google Scholar 

  75. Oliveira, A. G., Desjardin, D. E., Perry, B. A., & Stevani, C. V. (2012). Evidence that a single bioluminescent system is shared by all known bioluminescent fungal lineages. Photochemical & Photobiological Sciences, 11, 848–852.

    CAS  Google Scholar 

  76. Oliveira, A. G., Stevani, C. V., Waldenmaier, H. E., Viviani, V., Emerson, J. M., Loros, J. J., & Dunlap, J. C. (2015). Circadian control sheds light on fungal bioluminescence. Current Biology, 25(7), 964–968.

    CAS  PubMed  Google Scholar 

  77. Oliveira, A. G., & Stevani, C. V. (2009). The enzymatic nature of fungal bioluminescence. Photochemical & Photobiological Sciences, 8(10), 1416–1421.

    CAS  Google Scholar 

  78. Purtov, K. V., Petushkov, V. N., Baranov, M. S., Mineev, K. S., Rodionova, N. S., Kaskova, Z. M., & Yampolsky, I. V. (2015). The chemical basis of fungal bioluminescence. Angewandte Chemie, 127(28), 8242–8246.

    Google Scholar 

  79. Kotlobay, A. A., Sarkisyan, K. S., Mokrushina, Y. A., Marcet-Houben, M., Serebrovskaya, E. O., Markina, N. M., & Yampolsky, I. V. (2018). Genetically encodable bioluminescent system from fungi. Proceedings of the National Academy of Sciences, 115(50), 12728–12732.

    CAS  Google Scholar 

  80. Kaskova, Z. M., Dörr, F. A., Petushkov, V. N., Purtov, K. V., Tsarkova, A. S., Rodionova, N. S., & Yampolsky, I. V. (2017). Mechanism and color modulation of fungal bioluminescence. Science advances, 3(4), e1602847.

    PubMed  PubMed Central  Google Scholar 

  81. Ke, H. M., & Tsai, I. J. (2022). Understanding and using fungal bioluminescence–Recent progress and future perspectives. Current Opinion in Green and Sustainable Chemistry, 33, 100570.

    CAS  Google Scholar 

  82. Oliveira, A. G., Amaral, D. T., Hannon, M. C., & Schulze, A. (2021). First record of bioluminescence in a sipunculan worm. Frontiers in Marine Science, 8, 762706.

    Google Scholar 

  83. Sousa, N. M., Veresoglou, S. D., Oehl, F., Rillig, M. C., & Maia, L. C. (2018). Predictors of arbuscular mycorrhizal fungal communities in the Brazilian tropical dry forest. Microbial Ecology, 75, 447–458.

    PubMed  Google Scholar 

  84. Winagraski, E., Kaschuk, G., Monteiro, P. H. R., Auer, C. G., & Higa, A. R. (2019). Diversity of arbuscular mycorrhizal fungi in forest ecosystems of Brazil: a review. Cerne, 25, 25–35.

    Google Scholar 

  85. Silva-Filho, A. G., Mombert, A., Nascimento, C. C., Nóbrega, B. B., Soares, D. M., Martins, A. G., & Menolli, N., Jr. (2023). Eoscyphella luciurceolata gen. and sp. Nov. (Agaricomycetes) Shed Light on Cyphellopsidaceae with a New Lineage of Bioluminescent Fungi. Journal of Fungi, 9(10), 1004.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Omachi, C. Y., Tamanaha, M. D. S., & Proença, L. A. D. O. (2007). Bloom of Alexandrium fraterculus in coastal waters off Itajaí, SC, Southern Brazil. Brazilian Journal of Oceanography, 55, 57–61.

    Google Scholar 

  87. Menezes, M., Branco, S., Miotto, M. C., & Alves-de-Souza, C. (2018). The Genus Alexandrium (Dinophyceae, Dinophyta) in Brazilian Coastal Waters. Frontiers in Marine Science, 5, 421.

    Google Scholar 

  88. Colepicolo, P., Camarero, V. C. P. C., & Hastings, J. W. (1992). A circadian rhythm in the activity of superoxide dismutase in the photosynthetic alga Gonyaulax polyedra. Chronobiology international, 9(4), 266–268.

    CAS  PubMed  Google Scholar 

  89. Colepicolo, P., Roenneberg, T., Morse, D., Taylor, W. R., & Hastings, J. W. (1993). Circadian Regulation of Bioluminescence in the Dinoflagellate Pyrocystis lunula 1. Journal of Phycology, 29(2), 173–179.

    Google Scholar 

  90. Nunes, C. C. S., Susini-Ribeiro, S. M. M., & Cavalcante, K. P. (2019). Dinoflagellates in tropical estuarine waters from the Maraú River, Camamu Bay, northeastern Brazil. Check List, 15(5), 951–963.

    Google Scholar 

  91. Nunes, C. C., da Silva, D. M. L., Ribeiro, S. M. M. S., & de Castro Nunes, J. M. (2023). Spatio-temporal variation of dinoflagellates in a tropical anthropized estuary in northeastern Brazil. Regional Studies in Marine Science, 65, 103090.

    Google Scholar 

  92. Tocci, B. R. C., Moser, G. A. O., & Ciotti, A. M. (2023). Phytoplankton composition from Araçá Bay and São Sebastião Channel, São Paulo. Brazil. Biota Neotropica, 23, e20211260.

    Google Scholar 

  93. Abrahams, M. V., & Townsend, L. D. (1993). Bioluminescence in dinoflagellates: a test of the burgular alarm hypothesis. Ecology, 74(1), 258–260.

    Google Scholar 

  94. Maldonado, E. M., & Latz, M. I. (2007). Shear-stress dependence of dinoflagellate bioluminescence. The Biological Bulletin, 212(3), 242–249.

    PubMed  Google Scholar 

  95. Mensinger, A. F., & Case, J. F. (1992). Dinoflagellate luminescence increases susceptibility of zooplankton to teleost predation. Marine Biology, 112, 207–210.

    Google Scholar 

  96. Rigby, K., & Selander, E. (2021). Predatory cues drive colony size reduction in marine diatoms. Ecology and Evolution, 11(16), 11020–11027.

    PubMed  PubMed Central  Google Scholar 

  97. Schnitzler, C. E., Pang, K., Powers, M. L., Reitzel, A. M., Ryan, J. F., Simmons, D., & Baxevanis, A. D. (2012). Genomic organization, evolution, and expression of photoprotein and opsin genes in Mnemiopsis leidyi: a new view of ctenophore photocytes. BMC Biology, 10, 1–26.

    Google Scholar 

  98. Zimmer, M. (2009). GFP: From jellyfish to the Nobel prize and beyond. Chemical Society Reviews, 38(10), 2823–2832.

    CAS  PubMed  Google Scholar 

  99. Oliveira, O. M., & Migotto, A. E. (2006). Pelagic ctenophores from the São Sebastião Channel, southeastern Brazil. Zootaxa, 1183(1), 1–26.

    Google Scholar 

  100. Oliveira, O. M., Miranda, T. P., Araujo, E. M., Ayon, P., Cedeno-Posso, C. M., Cepeda-Mercado, A. A., & Marques, A. C. (2016). Census of Cnidaria (Medusozoa) and Ctenophora from south American marine waters. Zootaxa, 4194(1), 1–256.

    Google Scholar 

  101. Shimomura, O., Masugi, T., Johnson, F. H., & Haneda, Y. (1978). Properties and reaction mechanism of the bioluminescence system of the deep-sea shrimp Oplophorus gracilorostris. Biochemistry, 17(6), 994–998.

    CAS  PubMed  Google Scholar 

  102. Latz, M. I., & Case, J. F. (1992). Slow photic and chemical induction of bioluminescence in the midwater shrimp. Sergestes similis Hansen. The Biological Bulletin, 182(3), 391–400.

    CAS  PubMed  Google Scholar 

  103. Schweikert, L. E., Davis, A. L., Johnsen, S., & Bracken-Grissom, H. D. (2020). Visual perception of light organ patterns in deep-sea shrimps and implications for conspecific recognition. Ecology and Evolution, 10(17), 9503–9513.

    PubMed  PubMed Central  Google Scholar 

  104. Alves-Júnior, F. A., Bertrand, A., Melo, P. A. M. C., Correia, É. P., Figueiredo, L. G. P., & Neumann-Leitão, S. (2018). (First record of a rare deep-sea copepod, Gaussia intermedia Defaye, 1998 (Calanoida, Metridinidae), from the Atlantic Ocean. Crustaceana, 91(4), 501–508.

    Google Scholar 

  105. de Almeida Alves-Júnior, F., de Sá Leitão Câmara de Araújo, M., Carsoso, I. A., Bertrand, A., & Souza-Filho, J. F. (2019). Meso-and bathypelagic prawns of the superfamilies Penaeoidea Rafinesque, 181 and Sergestoidea Dana, 185 (Crustacea: Decapoda: Dendrobranchiata) from Southwestern Atlantic: new records and bathymetric distribution. Thalassas An International Journal of Marine Sciences, 35, 465–484.

    Google Scholar 

  106. Marazzo, A., & Valentin, J. L. (2001). Spatial and temporal variations of Penilia avirostris and Evadne tergestina (Crustacea, Branchiopoda) in a tropical bay, Brazil. Hydrobiologia, 445, 133–139.

    Google Scholar 

  107. Verdes, A., & Gruber, D. F. (2017). Glowing worms: Biological, chemical, and functional diversity of bioluminescent annelids. Integrative and Comparative Biology, 57(1), 18–32.

    CAS  PubMed  Google Scholar 

  108. Rodionova, N. S., Rota, E., Tsarkova, A. S., & Petushkov, V. N. (2017). Progress in the study of bioluminescent earthworms. Photochemistry and Photobiology, 93(2), 416–428.

    CAS  PubMed  Google Scholar 

  109. Tsarkova, A. S., Kaskova, Z. M., & Yampolsky, I. V. (2016). A tale of two luciferins: fungal and earthworm new bioluminescent systems. Accounts of Chemical Research, 49(11), 2372–2380.

    CAS  PubMed  Google Scholar 

  110. Kanie, S., Miura, D., Jimi, N., Hayashi, T., Nakamura, K., Sakata, M., & Mitani, Y. (2021). Violet bioluminescent Polycirrus sp. (Annelida: Terebelliformia) discovered in the shallow coastal waters of the Noto Peninsula in Japan. Scientific Reports, 11(1), 19097.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Deheyn, D. D., & Latz, M. I. (2009). Internal and secreted bioluminescence of the marine polychaete Odontosyllis phosphorea (Syllidae). Invertebrate Biology, 128(1), 31–45.

    Google Scholar 

  112. Jamieson, B. G. M., & Wampler, J. E. (1979). Bioluminescent Australian Earthworms II. Taxonomy and Preliminary Report of Bioluminescence in the General Spenceriella, Fletcherodrilus and Pontodrilus (Megascolecidae: Oligochaeta). Australian Journal of Zoology, 27(4), 637–669.

    Google Scholar 

  113. Viviani, V. American Society for Photobiology. (2007). Terrestrial Bioluminescence. Photobiological Sciences Online American Society for Photobiology, P1 Online Recourse. McLean, VA : Americal Society of Photobiology.

  114. Branchini, B. R., Behney, C. E., Southworth, T. L., Rawat, R., & Deheyn, D. D. (2014). Chemical analysis of the luminous slime secreted by the marine worm Chaetopterus (Annelida, Polychaeta). Photochemistry and Photobiology, 90(1), 247–251.

    CAS  PubMed  Google Scholar 

  115. Gaston, G. R., & Hall, J. (2000). Lunar periodicity and bioluminescence of swarming Odontosyllis luminosa (Polychaeta: Syllidae) in Belize. Gulf and Caribbean Research, 12(1), 47–51.

    Google Scholar 

  116. Fukuda, M. V., & de Matos Nogueira, J. M. (2006). A new species of Odontosyllis Claparède, 1863 (Polychaeta: Syllidae: Eusyllinae), and description of Brazilian material of Odontosyllis cf. fulgurans (Audouin and Milne Edwards, 1834). Zoological Sudies-Taipei, 45(2), 223.

    Google Scholar 

  117. Jimi, N., Bessho-Uehara, M., Nakamura, K., Sakata, M., Hayashi, T., Kanie, S., & Ogoh, K. (2023). Investigating the diversity of bioluminescent marine worm Polycirrus (Annelida), with description of three new species from the Western Pacific. Royal Society Open Science, 10(3), 230039.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Mitani, Y., Yasuno, R., Isaka, M., Mitsuda, N., Futahashi, R., Kamagata, Y., & Ohmiya, Y. (2018). Novel gene encoding a unique luciferase from the fireworm Odontosyllis undecimdonta. Scientific Reports, 8(1), 12789.

    PubMed  PubMed Central  Google Scholar 

  119. Fukuda, M. V., Nogueira, J. M. D. M., Paresque, K., & San Martin, G. (2013). Species of Odontosyllis Claparède, 1863 (Annelida: Polychaeta: Syllidae) occurring along the Brazilian coast. Zootaxa, 3609(2), 142–162.

    PubMed  Google Scholar 

  120. Paresque, K., Fukuda, M. V., San Martin, G., & Nogueira, J. M. D. M. (2015). Amblyosyllis, Eusyllis, Odontosyllis, Perkinsyllis and Streptodonta (Annelida: Syllidae) from Brazil, with descriptions of two new species and new records for the country. Zootaxa, 4000(3), 301–334.

    PubMed  Google Scholar 

  121. Carrerette, O., & Nogueira, J. M. (2013). Four new species of Polycirrus Grube, 1850 (Polychaeta: Terebellidae) from Campos Basin, southeastern Brazil. Zootaxa, 3626, 146–172.

    PubMed  Google Scholar 

  122. Nogueira, J. M. D. M., van Deursen, P. F., Ranauro, N., & Carrerette, O. (2020). On Polycirrus changbunker sp. nov. (Annelida: Terebelliformia: Polycirridae), a new species of polycirrid worms from southwestern Atlantic. Zoosymposia, 19, 185–197.

    Google Scholar 

  123. Kawauchi, G. Y., & Rice, M. E. (2009). Two new species of Nephasoma (Sipuncula: Golfingiidae) from the western Atlantic Ocean. Proceedings of the Biological Society of Washington, 122(1), 1–13.

    Google Scholar 

  124. Hastings, J. W., & Johnson, C. H. (2003). Bioluminescence and chemiluminescence. Methods in enzymology (Vol. 360, pp. 75–104). Academic press.

    Google Scholar 

  125. Kuse, M. (2014). Chromophores in photoproteins of a glowing squid and mollusk. Bioscience, Biotechnology, and Biochemistry, 78(5), 731–736.

    CAS  PubMed  Google Scholar 

  126. Girsch, S. J., Herring, P. J., & McCapra, F. (1976). Structure and preliminary biochemical characterization of the bioluminescent system of Ommastrephes pteropus (Steenstrup) (Mollusca: Cephalopoda). Journal of the Marine Biological Association of the United Kingdom, 56(3), 707–722.

    CAS  Google Scholar 

  127. Johnsen, S., Balser, E. J., Fisher, E. C., & Widder, E. A. (1999). Bioluminescence in the deep-sea cirrate octopod Stauroteuthis syrtensis Verrill (Mollusca: Cephalopoda). The Biological Bulletin, 197(1), 26–39.

    CAS  PubMed  Google Scholar 

  128. Tsuji, F. I. (1983). Molluscan bioluminescence. The mollusca (pp. 257–279). Academic Press.

    Google Scholar 

  129. Barrera-Oro, E. (2002). The role of fish in the Antarctic marine food web: differences between inshore and offshore waters in the southern Scotia Arc and west Antarctic Peninsula. Antarctic Science, 14(4), 293–309.

    Google Scholar 

  130. McCormack, S. A., Melbourne-Thomas, J., Trebilco, R., Griffith, G., Hill, S. L., Hoover, C., & Constable, A. J. (2021). Southern Ocean food web modelling: Progress, prognoses, and future priorities for research and policy makers. Frontiers in Ecology and Evolution. https://doi.org/10.3389/fevo.2021.624763

    Article  Google Scholar 

  131. Mincarone, M. M., Eduardo, L. N., Di Dario, F., Frédou, T., Bertrand, A., & Lucena-Frédou, F. (2022). New records of rare deep-sea fishes (Teleostei) collected from off north-eastern Brazil, including seamounts and islands of the Fernando de Noronha Ridge. Journal of Fish Biology, 101(4), 945–959.

    PubMed  Google Scholar 

  132. Amorim, A. D., Arfelli, C. A., & Fagundes, L. (1998). Pelagic elasmobranchs caught by longliners off southern Brazil during 1974–97: an overview. Marine and Freshwater Research, 49(7), 621–632.

    Google Scholar 

  133. Gianeti, M. D., & Vooren, C. M. (2008). Identification of the sharks of the genus Etmopterus Rafinesque, 1810 (Elasmobranchii: Etmopteridae) from the upper slope of southern Brazil, with comparison between the species E. bigelowi Shirai & Tachikawa, 1993 and E. pusillus Lowe, 1839. Brazilian Journal of Oceanography, 56, 139–143.

    Google Scholar 

  134. Mourato, B. L., Coelho, R., Amorim, A. F., Carvalho, F. C., Hazin, F. H., & Burgess, G. (2010). Size at maturity and length-weight relationships of the blurred lantern shark Etmopterus bigelowi (Squaliformes: Etmopteridae) caught off southeastern Brazil. Ciencias Marinas, 36(4), 323–331.

    Google Scholar 

  135. Rocha, R. M. D., & Bonnet, N. Y. (2009). Introduced ascidians (Tunicata, Ascidiacea) in the Arquipélago de Alcatrazes, State of São Paulo. Brazil. Iheringia. Série Zoologia, 99, 27–35.

    Google Scholar 

  136. Dias, G. M., Rocha, R. M., Lotufo, T. M. D. C., & Kremer, L. P. (2013). Fifty years of ascidian biodiversity research in São Sebastião, Brazil. Journal of the Marine Biological Association of the United Kingdom, 93(1), 273–282.

    Google Scholar 

  137. Tessler, M., Gaffney, J. P., Oliveira, A. G., Guarnaccia, A., Dobi, K. C., Gujarati, N. A., & Gruber, D. F. (2020). A putative chordate luciferase from a cosmopolitan tunicate indicates convergent bioluminescence evolution across phyla. Scientific Reports, 10(1), 17724.

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Grober, M. S. (1988). Brittle-star bioluminescence functions as an aposematic signal to deter crustacean predators. Animal Behaviour, 36(2), 493–501.

    Google Scholar 

  139. Jones, A., & Mallefet, J. (2013). Why do brittle stars emit light? Behavioural and evolutionary approaches of bioluminescence. Cahiers de Biologie Marine, 54(4), 729–734.

    Google Scholar 

  140. Hendler, G. (1996). Taxonomic Atlas of the benthic fauna of the Santa Maria Basin and western Santa Barbara Channel. Class Ophiuroidea. Miscellaneous Taxa. Santa Barbara Museum of Natural History, Santa Barbara, Irene McCulloch Foundation Monograph Series, 14, 113–179.

  141. Gondim, A. I., Alonso, C., Dias, T. L., Manso, C. L., & Christoffersen, M. L. (2013). A taxonomic guide to the brittle-stars (Echinodermata, Ophiuroidea) from the State of Paraíba continental shelf. Northeastern Brazil. ZooKeys, 307, 45.

    Google Scholar 

  142. Viviani, V. R., & Bechara, E. J. (1993). Biophysical and biochemical aspects of phengodid (railroad-worm) bioluminescence. Photochemistry and Photobiology, 58(4), 615–622.

    CAS  Google Scholar 

  143. Viviani, V. R., & Ohmiya, Y. (2000). Bioluminescence color determinants of Phrixothrix Railroad-worm luciferases: Chimeric Luciferases, Site-directed Mutagenesis of Arg 215 and Guanidine effect. Photochemistry and Photobiology, 72(2), 267–271.

    CAS  PubMed  Google Scholar 

  144. Costa, C., Vanin, S. A., Casari, S. A., & Viviani, V. R. (1999). Larvae of neotropical Coleoptera. XXVII. Phrixothrix hirtus: Immatures, neotenic female, adult male and bionomic data (Phengodinae, Phengodidae, Coleoptera). Iheringia. Sér. Zool., 86, 9–28.

    Google Scholar 

  145. Widder, E. (2002). Bioluminescence and the pelagic visual environment. Marine and Freshwater Behaviour and Physiology, 35(1–2), 1–26.

    Google Scholar 

  146. Martini, S., & Haddock, S. H. (2017). Quantification of bioluminescence from the surface to the deep sea demonstrates its predominance as an ecological trait. Scientific reports, 7(1), 45750.

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Srivastava, A., & Katiyar, K. (2021). The Ecology of Bioluminescence. Bioluminescence-Technology and Biology. IntechOpen.

    Google Scholar 

  148. Anderson, D. M., Alpermann, T. J., Cembella, A. D., Collos, Y., Masseret, E., & Montresor, M. (2012). The globally distributed genus Alexandrium: multifaceted roles in marine ecosystems and impacts on human health. Harmful Algae, 14, 10–35.

    PubMed  PubMed Central  Google Scholar 

  149. Kotlobay, A. A., Dubinnyi, M. A., Kovalchuk, S. I., Makhin, A. P., Miturich, V. S., Lyakhovich, M. S., & Kaskova, Z. M. (2023). Structure elucidation of Keroplatus (Diptera: Keroplatidae) fungus gnat oxyluciferin. Biochemical and Biophysical Research Communications. https://doi.org/10.1016/j.bbrc.2023.07.035

    Article  PubMed  Google Scholar 

  150. Mitani, Y., Yasuno, R., Futahashi, R., Oakley, T. H., & Ohmiya, Y. (2019). Luciferase gene of a Caribbean fireworm (Syllidae) from Puerto Rico. Scientific Reports, 9(1), 13015.

    PubMed  PubMed Central  Google Scholar 

  151. Purtov, K. V., Petushkov, V. N., Rodionova, N. S., Pakhomova, V. G., Myasnyanko, I. N., Myshkina, N. M., & Gitelson, J. I. (2019). Luciferin-Luciferase System of Marine Polychaete Chaetopterus variopedatus. Doklady Biochemistry and Biophysics (Vol. 486, pp. 209–212). Pleiades Publishing.

    Google Scholar 

  152. Martini, S., Kuhnz, L., Mallefet, J., & Haddock, S. H. (2019). Distribution and quantification of bioluminescence as an ecological trait in the deep sea benthos. Scientific reports, 9(1), 14654.

    PubMed  PubMed Central  Google Scholar 

  153. Vysotski, E. S. (2022). Bioluminescent and fluorescent proteins: molecular mechanisms and modern applications. International Journal of Molecular Sciences, 24(1), 281.

    PubMed  PubMed Central  Google Scholar 

  154. Shimomura, O. (2006). The photoproteins. In S. Daunert & Deo S. K.(Eds.), Photoproteins in Bioanalysis,Wiley‐VCH Verlag GmbH & Co. KGaA.

  155. Eremeeva, E. V., Bartsev, S. I., van Berkel, W. J., & Vysotski, E. S. (2017). Unanimous model for describing the fast bioluminescence kinetics of Ca2+-regulated photoproteins of different organisms. Photochemistry and Photobiology, 93(2), 495–502.

    CAS  PubMed  Google Scholar 

  156. Shimomura, O. (1985). Bioluminescence in the sea: photoprotein systems. Symposia of the Society for Experimental Biology, 39, 351–372.

  157. Gorokhovatsky, A. Y., Marchenkov, V. V., Rudenko, N. V., Ivashina, T. V., Ksenzenko, V. N., Burkhardt, N., & Alakhov, Y. B. (2004). Fusion of Aequorea victoria GFP and aequorin provides their Ca2+-induced interaction that results in red shift of GFP absorption and efficient bioluminescence energy transfer. Biochemical and Biophysical Research Communications, 320(3), 703–711.

    CAS  PubMed  Google Scholar 

  158. Xiong, T. C., Ronzier, E., Sanchez, F., Corratgé-Faillie, C., Mazars, C., & Thibaud, J. B. (2014). Imaging long distance propagating calcium signals in intact plant leaves with the BRET-based GFP-aequorin reporter. Frontiers in Plant Science, 5, 43.

    PubMed  PubMed Central  Google Scholar 

  159. Bakayan, A., Domingo, B., Miyawaki, A., & Llopis, J. (2015). Imaging Ca 2+ activity in mammalian cells and zebrafish with a novel red-emitting aequorin variant. Pflügers Archiv-European Journal of Physiology, 467, 2031–2042.

    CAS  PubMed  Google Scholar 

  160. Alonso, M. T., Torres-Vidal, P., Calvo, B., Rodriguez, C., Delrio-Lorenzo, A., Rojo-Ruiz, J., & Patel, S. (2023). Use of aequorin-based indicators for monitoring Ca2+ in acidic organelles. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1870, 119481.

    CAS  PubMed  Google Scholar 

  161. Lismont, E., Verbakel, L., Vogel, E., Corbisier, J., Degroot, G. N., Verdonck, R., & Broeck, J. V. (2020). Can BRET-based biosensors be used to characterize G-protein mediated signaling pathways of an insect GPCR, the Schistocerca gregaria CRF-related diuretic hormone receptor? Insect Biochemistry and Molecular Biology, 122, 103392.

    CAS  PubMed  Google Scholar 

  162. Shrestha, S., & Deo, S. K. (2006). Anthozoa red fluorescent protein in biosensing. Analytical and bioanalytical chemistry, 386, 515–524.

    CAS  PubMed  Google Scholar 

  163. Belleti, E., Bevilaqua, V. R., Brito, A. M., Modesto, D. A., Lanfredi, A. J., Viviani, V. R., & Nantes-Cardoso, I. L. (2021). Synthesis of bioluminescent gold nanoparticle–luciferase hybrid systems for technological applications. Photochemical & Photobiological Sciences, 20, 1439–1453.

    CAS  Google Scholar 

  164. Bevilaqua, V. R., Matsuhashi, T., Oliveira, G., Oliveira, P. S. L., Hirano, T., & Viviani, V. R. (2019). Phrixothrix luciferase and 6′-aminoluciferins reveal a larger luciferin phenolate binding site and provide novel far-red combinations for bioimaging purposes. Scientific reports, 9(1), 8998.

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Oliveira, G., & Viviani, V. R. (2019). Temperature effect on the bioluminescence spectra of firefly luciferases: Potential applicability for ratiometric biosensing of temperature and pH. Photochemical & Photobiological Sciences, 18, 2682–2687.

    CAS  Google Scholar 

  166. Pelentir, G. F., Bevilaqua, V. R., & Viviani, V. R. (2019). A highly efficient, thermostable and cadmium selective firefly luciferase suitable for ratiometric metal and pH biosensing and for sensitive ATP assays. Photochemical & Photobiological Sciences, 18, 2061–2070.

    CAS  Google Scholar 

  167. Biffi, G., Rosa, S. P., & Kundrata, R. (2021). Hide-and-seek with tiny neotenic beetles in one of the hottest biodiversity hotspots: Towards an understanding of the real diversity of Jurasaidae (Coleoptera: Elateroidea) in the Brazilian Atlantic Forest. Biology, 10(5), 420.

    PubMed  PubMed Central  Google Scholar 

  168. Lewis, S. M., Wong, C. H., Owens, A. C., Fallon, C., Jepsen, S., Thancharoen, A., & Reed, J. M. (2020). A global perspective on firefly extinction threats. BioScience, 70(2), 157–167.

    Google Scholar 

  169. Stewart, A. J. (2021). Impacts of artificial lighting at night on insect conservation. Insect Conservation and Diversity, 14(2), 163–166.

    Google Scholar 

  170. Vaz, S., Manes, S., Gama-Maia, D., Silveira, L., Mattos, G., Paiva, P. C., & Lorini, M. L. (2021). Light pollution is the fastest growing potential threat to firefly conservation in the Atlantic Forest hotspot. Insect Conservation and Diversity, 14(2), 211–224.

    Google Scholar 

  171. Viviani, V. R., Rosa, S. P., Prado, R. A., Pelentir, G. F., de Souza, D. R., Reis, R. M., & Costa, C. (2023). Inventory and ecological aspects of bioluminescent beetles in the Cerrado ecosystem and its decline around Emas National Park (Brazil). Annals of the Entomological Society of America. https://doi.org/10.1093/aesa/saad029

    Article  Google Scholar 

  172. Melnik, A. V., Melnikov, V. V., Serebrennikov, A. N., Melnik, L. A., & Mashukova, O. V. (2019). Biooceanographic characteristics of the bioluminescence fields in the Sevastopol coastal waters: Results of longterm monitoring. Sistemy KontrolyaOokruzhayushchei Sredy, 1, 35.

    Google Scholar 

  173. Otjacques, E., Pissarra, V., Bolstad, K., Xavier, J. C., McFall-Ngai, M., & Rosa, R. (2023). Bioluminescence in cephalopods: biodiversity, biogeography and research trends. Frontiers in Marine Science. https://doi.org/10.3389/fmars.2023.1161049

    Article  Google Scholar 

  174. Keles, D., Delacote, P., Pfaff, A., Qin, S., & Mascia, M. B. (2020). What drives the erasure of protected areas? Evidence from across the Brazilian Amazon. Ecological Economics, 176, 106733.

    Google Scholar 

  175. Overbeck, G. E., Vélez-Martin, E., Scarano, F. R., Lewinsohn, T. M., Fonseca, C. R., Meyer, S. T., & Pillar, V. D. (2015). Conservation in Brazil needs to include non-forest ecosystems. Diversity and Distributions, 21(12), 1455–1460.

    Google Scholar 

  176. Pfaff, A., Robalino, J., Herrera, D., & Sandoval, C. (2015). Protected areas’ impacts on Brazilian Amazon deforestation: examining conservation–development interactions to inform planning. PLoS ONE, 10(7), e0129460.

    PubMed  PubMed Central  Google Scholar 

  177. Christensen, M., & Jokar Arsanjani, J. (2020). Stimulating implementation of sustainable development goals and conservation action: predicting future land use/cover change in Virunga National Park. Congo. Sustainability, 12(4), 1570.

    Google Scholar 

  178. Kohler, F., & Brondizio, E. S. (2017). Considering the needs of indigenous and local populations in conservation programs. Conservation Biology, 31(2), 245–251.

    PubMed  Google Scholar 

  179. Fonseca, C. R., & Venticinque, E. M. (2018). Biodiversity conservation gaps in Brazil: a role for systematic conservation planning. Perspectives in Ecology and Conservation, 16(2), 61–67.

    Google Scholar 

  180. Sparovek, G., Barretto, A. G. D. O. P., Matsumoto, M., & Berndes, G. (2015). Effects of governance on availability of land for agriculture and conservation in Brazil. Environmental Science & Technology, 49(17), 10285–10293.

    CAS  Google Scholar 

  181. Nichols, J. D., & Williams, B. K. (2006). Monitoring for conservation. Trends in Ecology & Evolution, 21(12), 668–673.

    Google Scholar 

  182. Longcore, T., & Rich, C. (2004). Ecological light pollution. Frontiers in Ecology and the Environment, 2(4), 191–198.

    Google Scholar 

  183. Horváth, G., Kriska, G., Malik, P., & Robertson, B. (2009). Polarized light pollution: a new kind of ecological photopollution. Frontiers in Ecology and the Environment, 7(6), 317–325.

    Google Scholar 

  184. Stathakis, D., Liakos, L., Chalkias, C., & Pafi, M. (2018). A photopollution index based on weighted cumulative visibility to night lights. Remote Sensing Technologies and Applications in Urban Environments III (Vol. 10793, p. 1079304). SPIE.

    Google Scholar 

  185. Blume, C., Garbazza, C., & Spitschan, M. (2019). Effects of light on human circadian rhythms, sleep and mood. Somnologie, 23(3), 147.

    PubMed  PubMed Central  Google Scholar 

  186. Bocheva, G., Slominski, R. M., & Slominski, A. T. (2023). Environmental air pollutants affecting skin functions with systemic implications. International Journal of Molecular Sciences, 24(13), 10502.

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Owens, A., Van den Broeck, M., De Cock, R., & Lewis, S. M. (2022). Behavioral responses of bioluminescent fireflies to artificial light at night. Frontiers in Ecology and Evolution, 10, 946640.

    Google Scholar 

  188. Owens, A. C., & Lewis, S. M. (2018). The impact of artificial light at night on nocturnal insects: a review and synthesis. Ecology and Evolution, 8(22), 11337–11358.

    PubMed  PubMed Central  Google Scholar 

  189. Manfrin, A., Singer, G., Larsen, S., Weiß, N., Van Grunsven, R. H., Weiß, N. S., & Hölker, F. (2017). Artificial light at night affects organism flux across ecosystem boundaries and drives community structure in the recipient ecosystem. Frontiers in Environmental Science, 5, 61.

    Google Scholar 

  190. Wilson, P., Thums, M., Pattiaratchi, C., Meekan, M., Pendoley, K., Fisher, R., & Whiting, S. (2018). Artificial light disrupts the nearshore dispersal of neonate flatback turtles Natator depressus. Marine Ecology Progress Series, 600, 179–192.

    CAS  Google Scholar 

  191. Witherington, B. E. (1997). The problem of photopollution for sea turtles and other nocturnal animals. Behavioral Approaches to Conservation in the Wild, 303–328

  192. Roza, A. S., Mermudes, J. R. M., & Silveira, L. F. L. D. (2022). A new genus and two new species of fireflies from South America (Lampyridae: Lampyrinae: Photinini). Diversity, 14(11), 1005.

    Google Scholar 

  193. Viviani, V. R., Silva, J. R., & Ho, P. L. (2021). A novel brighter bioluminescent fusion protein based on ZZ domain and Amydetes vivianii firefly luciferase for immunoassays. Frontiers in Bioengineering and Biotechnology, 9, 755045.

    PubMed  PubMed Central  Google Scholar 

  194. Delprete, P. G., & Jardim, J. G. (2012). Systematics, taxonomy and floristics of Brazilian Rubiaceae: an overview about the current status and future challenges. Rodriguésia, 63, 101–128.

    Google Scholar 

Download references

Acknowledgements

We would like to express our sincere gratitude to the reviewers for their contributions to the final preparation of our manuscript. Your feedback and insightful suggestions have been invaluable in enhancing the clarity, accuracy, and overall quality of our work.

Funding

We acknowledge the support of São Paulo Research Foundation (FAPESP 2022/09910-9 to D.T.A. and FAPESP 2018/17855-2 to D.R.S.) and Yeshiva University start-up fund to A.G.O.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danilo T. Amaral.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Supplementary Information

Below is the link to the electronic supplementary material.

43630_2024_590_MOESM1_ESM.pdf

Supplementary file1 Figure S1. Captivating Diversity of Brazilian Bioluminescent Species Organized by Families. Utilizing Occurrence Dataset Accesses: GBIF.org (17 July 2023) GBIF Occurrence Download https://doi.org/https://doi.org/10.15468/dl.c9hktd); GBIF.org (18 July 2023) GBIF Occurrence Download https://doi.org/https://doi.org/10.15468/dl.5zrd5d); GBIF.org (21 July 2023) GBIF Occurrence Download https://doi.org/https://doi.org/10.15468/dl.x3p7qn. (PDF 3030 KB)

Supplementary file2 (DOCX 255 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amaral, D.T., Kaplan, R.A., Takishita, T.K.E. et al. Glowing wonders: exploring the diversity and ecological significance of bioluminescent organisms in Brazil. Photochem Photobiol Sci 23, 1373–1392 (2024). https://doi.org/10.1007/s43630-024-00590-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-024-00590-x

Keywords

Navigation