Abstract
Bioluminescence, the emission of light by living organisms, is a captivating and widespread phenomenon with diverse ecological functions. This comprehensive review explores the biodiversity, mechanisms, ecological roles, and conservation challenges of bioluminescent organisms in Brazil, a country known for its vast and diverse ecosystems. From the enchanting glow of fireflies and glow-in-the-dark mushrooms to the mesmerizing displays of marine dinoflagellates and cnidarians, Brazil showcases a remarkable array of bioluminescent species. Understanding the biochemical mechanisms and enzymes involved in bioluminescence enhances our knowledge of their evolutionary adaptations and ecological functions. However, habitat loss, climate change, and photopollution pose significant threats to these bioluminescent organisms. Conservation measures, interdisciplinary collaborations, and responsible lighting practices are crucial for their survival. Future research should focus on identifying endemic species, studying environmental factors influencing bioluminescence, and developing effective conservation strategies. Through interdisciplinary collaborations, advanced technologies, and increased funding, Brazil can unravel the mysteries of its bioluminescent biodiversity, drive scientific advancements, and ensure the long-term preservation of these captivating organisms.
Graphical abstract
Similar content being viewed by others
Data availability
The data used in this work are available in the supplementary material.
References
Herring, P. J. (1987). Systematic distribution of bioluminescence in living organisms. Journal of Bioluminescence and Chemiluminescence, 1(3), 147–163.
Viviani, V. R. (2002). The origin, diversity, and structure function relationships of insect luciferases. Cellular and Molecular Life Sciences CMLS, 59, 1833–1850.
Viviani, V. R. (2023). Looking into luciferin. Nature Chemistry, 15(5), 742–742.
Widder, E. A. (2001). Marine bioluminescence. Why do so many animals in the open ocean make light? BioScience, 1(1), 9.
Haddock, S. H., Moline, M. A., & Case, J. F. (2010). Bioluminescence in the sea. Annual Review of Marine Science, 2, 443–493.
Widder, E. A. (2010). Bioluminescence in the ocean: origins of biological, chemical, and ecological diversity. Science, 328(5979), 704–708.
Herring, P. J. (1977). Bioluminescence of marine organisms. Nature, 267(5614), 788–793.
Desjardin, D. E., Oliveira, A. G., & Stevani, C. V. (2008). Fungi bioluminescence revisited. Photochemical & Photobiological Sciences, 7, 170–182.
Roda, A., Pasini, P., Mirasoli, M., Michelini, E., & Guardigli, M. (2004). Biotechnological applications of bioluminescence and chemiluminescence. Trends in Biotechnology, 22(6), 295–303.
Mezzanotte, L., van’t Root, M., Karatas, H., Goun, E. A., & Löwik, C. W. (2017). In vivo molecular bioluminescence imaging: new tools and applications. Trends in b\Biotechnology, 35(7), 640–652.
Coutinho, M. C. L., Teixeira, V. L., & Santos, C. S. G. (2018). A review of “Polychaeta” chemicals and their possible ecological role. Journal of Chemical Ecology, 44, 72–94.
Martini, S., & Francis, W. R. (2020). The dark ocean is full of lights. Frontiers for Young Minds, 8, 44.
Orrico, C. M., Moline, M. A., Robbins, I., Zelenke, B., Barnard, A. H., Strubhar, W., & Moore, C. (2009). A new tool for monitoring ecosystem dynamics in coastal environments: Long-term use and servicing requirements of the commercial Underwater Bioluminescence Assessment Tool (U-BAT). In: OCEANS 2009 (pp. 1–7). IEEE.
Weinstein, P., Delean, S., Wood, T., & Austin, A. D. (2016). Bioluminescence in the ghost fungus Omphalotus nidiformis does not attract potential spore dispersing insects. IMA fungus, 7(2), 229–234.
Bechara, E. J., & Stevani, C. V. (2018). Brazilian bioluminescent beetles: reflections on catching glimpses of light in the Atlantic forest and Cerrado. Anais da Academia Brasileira de Ciências, 90, 663–679.
Costa, C., & Vanin, S. A. (2010). Coleoptera larval fauna associated with termite nests (Isoptera) with emphasis on the “bioluminescent termite nests” from Central Brazil. Psyche, 2010, 1–12.
Desjardin, D. E., Perry, B. A., Lodge, D. J., Stevani, C. V., & Nagasawa, E. (2010). Luminescent Mycena: new and noteworthy species. Mycologia, 102(2), 459–477.
Mirza, J. D., Migotto, A. E., Yampolsky, I. V., de Moraes, G. V., Tsarkova, A. S., & Oliveira, A. G. (2020). Chaetopterus variopedatus bioluminescence: A review of light emission within a species complex. Photochemistry and Photobiology, 96(4), 768–778.
Moraes, G. V., Hannon, M. C., Soares, D. M., Stevani, C. V., Schulze, A., & Oliveira, A. G. (2021). Bioluminescence in polynoid scale worms (Annelida: Polynoidae). Frontiers in Marine Science, 8, 643197.
Gabriel, G. V. M., Yasuno, R., Mitani, Y., Ohmiya, Y., & Viviani, V. R. (2019). Novel application of Macrolampis sp2 firefly luciferase for intracellular pH-biosensing in mammalian cells. Photochemical & Photobiological Sciences, 18, 1212–1217.
Stevani, C. V., Oliveira, A. G., Mendes, L. F., Ventura, F. F., Waldenmaier, H. E., Carvalho, R. P., & Pereira, T. A. (2013). Current status of research on fungal bioluminescence: biochemistry and prospects for ecotoxicological application. Photochemistry and Photobiology, 89(6), 1318–1326.
Viviani, V. R., Arnoldi, F. G. C., Neto, A. S., Oehlmeyer, T. L., Bechara, E. J. H., & Ohmiya, Y. (2008). The structural origin and biological function of pH-sensitivity in firefly luciferases. Photochemical & Photobiological Sciences, 7, 159–169.
Viviani, V. R., Pelentir, G. F., & Bevilaqua, V. R. (2022). Bioluminescence color-tuning firefly luciferases: engineering and prospects for real-time intracellular pH Imaging and heavy metal biosensing. Biosensors, 12(6), 400.
Amaral, D. T., Prado, R. A., & Viviani, V. R. (2012). Luciferase from Fulgeochlizus bruchi (Coleoptera: Elateridae), a Brazilian click-beetle with a single abdominal lantern: molecular evolution, biological function and comparison with other click-beetle luciferases. Photochemical & Photobiological Sciences, 11, 1259–1267.
Amaral, D. T., Oliveira, G., Silva, J. R., & Viviani, V. R. (2016). A new orange emitting luciferase from the Southern-Amazon Pyrophorus angustus (Coleoptera: Elateridae) click-beetle: structure and bioluminescence color relationship, evolutional and ecological considerations. Photochemical & Photobiological Sciences, 15, 1148–1154.
Lall, A. B., Cronin, T. W., Carvalho, A. A., de Souza, J. M., Barros, M. P., Stevani, C. V., & Hill, A. A. (2010). Vision in click beetles (Coleoptera: Elateridae): pigments and spectral correspondence between visual sensitivity and species bioluminescence emission. Journal of Comparative Physiology A, 196, 629–638.
Lall, A. B., Viviani, V. R., & Ventura, D. F. (2023). Spectral tuning of bioluminescence and visual sensitivity in males of Brazilian firefly species inhabiting dim light environments (Coleoptera: Elateroidea: Lampyridae). Journal of Experimental Zoology Part A Ecological and Integrative Physiology, 339(1), 37–45.
Silveira, L. F., Khattar, G., Vaz, S., Wilson, V. A., Souto, P. M., Mermudes, J. R., & Monteiro, R. F. (2020). Natural history of the fireflies of the Serra dos Órgãos mountain range (Brazil: Rio de Janeiro)–one of the ‘hottest’firefly spots on Earth, with a key to genera (Coleoptera: Lampyridae). Journal of Natural History, 54(5–6), 275–308.
Viviani, V. R. (2001). Fireflies (Coleoptera: Lampyridae) from Southeastern Brazil: habitats, life history, and bioluminescence. Annals of the Entomological Society of America, 94(1), 129–145.
Viviani, V. R., & Santos, R. M. D. (2012). Bioluminescent coleoptera of biological station of Boracéia (Salesópolis, SP, Brazil): diversity, bioluminescence and habitat distribution. Biota Neotropica, 12, 21–34.
Lloyd, J. E. (1973). Fireflies of Melanesia: bioluminescence, mating behavior, and synchronous flashing (Coleoptera: Lampyridae). Environmental Entomology, 2(6), 991–1008.
Hagen, O., Santos, R. M., Schlindwein, M. N., & Viviani, V. R. (2015). Artificial night lighting reduces firefly (Coleoptera: Lampyridae) occurrence in Sorocaba. Brazil. Advances in Entomology, 3(01), 24.
Amaral, D. T., Arnoldi, F. G. C., Rosa, S. P., & Viviani, V. R. (2014). Molecular phylogeny of Neotropical bioluminescent beetles (Coleoptera:Elateroidea) in Southern central Brazil. Luminescence, 29(5), 412–422.
Dias, C. M., Schneider, M. C., Rosa, S. P., Costa, C., & Cella, D. M. (2007). The first cytogenetic report of fireflies (Coleoptera, Lampyridae) from Brazilian fauna. Acta Zoologica, 88(4), 309–316.
Rosa, S. P. (2007). Description of Photuris fulvipes (Blanchard) immatures (Coleoptera, Lampyridae, Photurinae) bionomic aspects under laboratory conditions. Revista Brasileira de Entomologia, 51, 125–130.
Silveira, L. F. L. D., Lima, W., Fonseca, C. R. V. D., & McHugh, J. (2022). Haplocauda, a new genus of fireflies endemic to the Amazon rainforest (Coleoptera: Lampyridae). Insects, 13(1), 58.
Viviani, V. R., Amaral, D., Prado, R., & Arnoldi, F. G. (2011). A new blue-shifted luciferase from the Brazilian Amydetes fanestratus (Coleoptera: Lampyridae) firefly: molecular evolution and structural/functional properties. Photochemical & Photobiological Sciences, 10, 1879–1886.
Zeballos, L. F., Roza, A. S., Campello-Gonçalves, L., Vaz, S., Da Fonseca, C. R. V., Rivera, S. C., & da Silveira, L. F. L. (2023). Phylogeny of Scissicauda Species, with Eight New Species, including the First Photinini Fireflies with Biflabellate Antennae (Coleoptera: Lampyridae). Diversity, 15(5), 620.
Campello-Goncalves, L., Souto, P. M., Mermudes, J. R., & Silveira, L. F. (2019). Uanauna gen. nov., a new genus of fireflies endemic to the Brazilian Atlantic forest (Coleoptera: Lampyridae), with key to brazilian genera of Lucidotina. Zootaxa, 4585(1), 59–72.
Ferreira, V. S., Keller, O., Branham, M. A., & Ivie, M. A. (2019). Molecular data support the placement of the enigmatic Cheguevaria as a subfamily of Lampyridae (Insecta: Coleoptera). Zoological Journal of the Linnean Society, 187(4), 1253–1258.
Silveira, L. F., & Mermudes, J. R. (2013). Memoan ciceroi gen. et sp. nov., a remarkable new firefly genus and species from the Atlantic Rainforest (Coleoptera: Lampyridae). Zootaxa, 3640, 79–87.
Silveira, L. F. L., & Mermudes, J. R. M. (2014). Ybytyramoan, a new genus of fireflies (Coleoptera: Lampyridae, Lampyrinae, Photinini) endemic to the Brazilian Atlantic Rainforest, with description of three new species. Zootaxa, 3835(3), 325–337.
Silveira, L. F., & Mermudes, J. R. (2017). A new tropical montane firefly genus and species, active during winter and endemic to the southeastern Atlantic Rainforest (Coleoptera: Lampyridae). Zootaxa. https://doi.org/10.11646/zootaxa.4221.2.4
Silveira, L. F. L., Souto, P. M., & Mermudes, J. R. M. (2018). Four new species of Luciuranus fireflies from the Brazilian Atlantic rainforest (Coleoptera: Lampyridae). Zootaxa, 4413(1), 173–186.
Campello, L., Vaz, S., Mermudes, J. R., Ferreira, A. L., & Silveira, L. F. (2022). Comparative morphology and key to Amydetinae genera, with description of three new firefly species (Coleoptera, Lampyridae). ZooKeys, 1114, 131.
Campos, S. V. N., Da Silveira, L. F. L., & Mermudes, J. R. M. (2018). Systematic review of the giant firefly Cratomorphus cossyphinus: sexual dimorphism, immature stages and geographic range (Coleoptera: Lampyridae). Annales Zoologici, 68(1), 57–84. Museum and Institute of Zoology, Polish Academy of Sciences.
Bocakova, M., Campello-Gonçalves, L., & Da Silveira, L. F. L. (2022). Phylogeny of the new subfamily Cladodinae: neotenic fireflies from the Neotropics (Coleoptera: Lampyridae). Zoological Journal of the Linnean Society, 195(4), 1181–1199.
Ferreira, V. S., Keller, O., & Branham, M. A. (2020). Multilocus phylogeny support the nonbioluminescent firefly Chespirito as a new subfamily in the Lampyridae (Coleoptera: Elateroidea). Insect Systematics and Diversity, 4(6), 2.
Riley, W. B., Rosa, S. P., & da Silveira, L. F. L. (2021). A comprehensive review and call for studies on firefly larvae. PeerJ, 9, e12121.
Silveira, L. F. L., Mermudes, J. R. M., & Bocakova, M. (2016). Systematic review of the firefly genus Scissicauda (Coleoptera, Lampyridae, Amydetinae) from Brazil. ZooKeys, 558, 55.
Silveira, L. F., Rosa, S. P., & Mermudes, J. R. (2019). Systematic review of the firefly genus Lucernuta Laporte, 1833 (Coleoptera: Lampyridae). Annales Zoologici, 69(2), 293–314. Museum and Institute of Zoology Polish Academy of Sciences.
Carvalho, M. C., Tomazini, A., Amaral, D. T., Murakami, M. T., & Viviani, V. R. (2020). Luciferase isozymes from the Brazilian Aspisoma lineatum (Lampyridae) firefly: origin of efficient pH-sensitive lantern luciferases from fat body pH-insensitive ancestors. Photochemical & Photobiological Sciences, 19, 1750–1764.
Moreira, A. C., Amaral, D. T., Gabriel, G. V. M., & Viviani, V. R. (2022). Cloning and molecular properties of a novel luciferase from the Brazilian Bicellonycha lividipennis (Lampyridae: Photurinae) firefly: comparison with other firefly luciferases. Photochemical & Photobiological Sciences, 21(9), 1559–1571.
Viviani, V. R., Arnoldi, F. G., Brochetto-Braga, M., & Ohmiya, Y. (2004). Cloning and characterization of the cDNA for the Brazilian Cratomorphus distinctus larval firefly luciferase: similarities with European Lampyris noctiluca and Asiatic Pyrocoelia luciferases. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 139(2), 151–156.
Viviani, V. R., Oehlmeyer, T. L., Arnoldi, F. G. C., & Brochetto-Braga, M. R. (2005). A new firefly luciferase with bimodal spectrum: identification of structural determinants of spectral pH-sensitivity in firefly luciferases. Photochemistry and Photobiology, 81(4), 843–848.
Costa, C. (1968). Gênero Pyrophorus. 2. Redescrição de algumas especies (col., elateridae). Papéis Avulsos de Zoologia, 22, 249–262.
Colepicolo-Neto, P., Bechara, E. J. H., & Costa, C. (1986). Oxygen toxicity aspects in luminescent and non-luminescent elaterid larvae. Insect Biochemistry, 16(2), 381–385.
Evans, M. E. G. (1972). The jump of the click beetle (Coleoptera, Elateridae)—a preliminary study. Journal of Zoology, 167(3), 319–336.
Ribak, G., & Weihs, D. (2011). Jumping without using legs: The jump of the click-beetles (Elateridae) is morphologically constrained. PLoS ONE, 6(6), e20871.
Viviani, V. R., & Amaral, D. T. (2016). First report of Pyrearinus larvae (Coleoptera: Elateridae) in clayish canga caves and luminous termite mounds in the Amazon Forest with a preliminary molecular-based phylogenetic analysis of the P. pumilus group. Annals of the Entomological Society of America, 109(4), 534–541.
Rosa, S. P., Mariano, R. D. R., Viviani, V. R., & Costa, C. (2020). Morphology of immature stages of Pyrearinus pumilus (Candèze, 1863 (Coleoptera: Elateridae: Pyrophorini): the click beetle responsible for the luminous canga caves in the state of Pará, Brazil. Zootaxa. https://doi.org/10.11646/zootaxa.4778.3.7
Arnoldi, F. G., da Silva Neto, A. J., & Viviani, V. R. (2010). Molecular insights on the evolution of the lateral and head lantern luciferases and bioluminescence colors in Mastinocerini railroad-worms (Coleoptera: Phengodidae). Photochemical & Photobiological Sciences, 9, 87–92.
Viviani, V. R., & Bechara, E. J. (1997). Bioluminescence and biological aspects of Brazilian railroad-worms (Coleoptera: Phengodidae). Annals of the Entomological Society of America, 90(3), 389–398.
Wittmer, W. (1975). The genus Phengodes in the United States (Coleoptera: Phengodidae). The Coleopterists’ Bulletin, 231–250.
Ferreira, V. S. (2015). An annotated catalogue of the type material of Elateroidea Leach, 1815 (Coleoptera) deposited in the Coleoptera collection of the Museum of Zoology of the University of São Paulo, Brazil. Zootaxa, 3937(2), 263–310.
Silveira, L. F. L., Roza, A. S., Vaz, S., & Mermudes, J. R. M. (2021). Description and phylogenetic analysis of a new firefly genus from the Atlantic Rainforest, with five new species and new combinations (Coleoptera: Lampyridae: Lampyrinae). Arthropod Systematics & Phylogeny, 79, 115–150.
Roza, A. S., Quintino, H. Y. S., Mermudes, J. R. M., & Silveira, L. F. L. (2017). Akamboja gen. nov., a new genus of railroad-worm beetle endemic to the Atlantic Rainforest, with five new species (Coleoptera: Phengodidae, Mastinocerinae). Zootaxa, 4306(4), 501–523.
Roza, A. S., & Mermudes, J. R. M. (2020). A new genus of railroad-worm beetles from the Atlantic Rainforest from Brazil (Coleoptera: Phengodidae, Mastinocerinae). Papéis Avulsos de Zoologia, 60, e202060-si.
Costa, C., Vanin, S. A., & Colepicolo Neto, P. (1986). Larvae of Neotropical Coleoptera. XIV. First Record of Bioluminescence in the family Staphylinidae (Xantholinini). Revista Brasileira de Entomologia, 30, 101104.
Rosa, S. P. (2010). Second record of bioluminescence in larvae of Xantholinus Dejean (Staphylinidae, Xantholinini) from Brazil. Revista Brasileira de Entomologia, 54, 147–148.
Falaschi, R. L., Amaral, D. T., Santos, I., Domingos, A. H., Johnson, G. A., Martins, A. G., & Stevani, C. V. (2019). Neoceroplatus betaryiensis nov. sp. (Diptera: Keroplatidae) is the first record of a bioluminescent fungus-gnat in South America. Scientific Reports, 9(1), 11291.
Fulton, B. B. (1941). A luminous fly larva with spider traits (Diptera, Mycetophilidae). Annals of the Entomological Society of America, 34(2), 289–302.
Viviani, V. R., Silva, J. R., Amaral, D. T., Bevilaqua, V. R., Abdalla, F. C., Branchini, B. R., & Johnson, C. H. (2020). A new brilliantly blue-emitting luciferin-luciferase system from Orfelia fultoni and Keroplatinae (Diptera). Scientific Reports, 10(1), 9608.
Viviani, V. R., Bevilaqua, V. R., de Souza, D. R., Pelentir, G. F., Kakiuchi, M., & Hirano, T. (2020). A very bright far-red bioluminescence emitting combination based on engineered railroad worm luciferase and 6′-amino-analogs for bioimaging purposes. International Journal of Molecular Sciences, 22(1), 303.
Oliveira, A. G., Desjardin, D. E., Perry, B. A., & Stevani, C. V. (2012). Evidence that a single bioluminescent system is shared by all known bioluminescent fungal lineages. Photochemical & Photobiological Sciences, 11, 848–852.
Oliveira, A. G., Stevani, C. V., Waldenmaier, H. E., Viviani, V., Emerson, J. M., Loros, J. J., & Dunlap, J. C. (2015). Circadian control sheds light on fungal bioluminescence. Current Biology, 25(7), 964–968.
Oliveira, A. G., & Stevani, C. V. (2009). The enzymatic nature of fungal bioluminescence. Photochemical & Photobiological Sciences, 8(10), 1416–1421.
Purtov, K. V., Petushkov, V. N., Baranov, M. S., Mineev, K. S., Rodionova, N. S., Kaskova, Z. M., & Yampolsky, I. V. (2015). The chemical basis of fungal bioluminescence. Angewandte Chemie, 127(28), 8242–8246.
Kotlobay, A. A., Sarkisyan, K. S., Mokrushina, Y. A., Marcet-Houben, M., Serebrovskaya, E. O., Markina, N. M., & Yampolsky, I. V. (2018). Genetically encodable bioluminescent system from fungi. Proceedings of the National Academy of Sciences, 115(50), 12728–12732.
Kaskova, Z. M., Dörr, F. A., Petushkov, V. N., Purtov, K. V., Tsarkova, A. S., Rodionova, N. S., & Yampolsky, I. V. (2017). Mechanism and color modulation of fungal bioluminescence. Science advances, 3(4), e1602847.
Ke, H. M., & Tsai, I. J. (2022). Understanding and using fungal bioluminescence–Recent progress and future perspectives. Current Opinion in Green and Sustainable Chemistry, 33, 100570.
Oliveira, A. G., Amaral, D. T., Hannon, M. C., & Schulze, A. (2021). First record of bioluminescence in a sipunculan worm. Frontiers in Marine Science, 8, 762706.
Sousa, N. M., Veresoglou, S. D., Oehl, F., Rillig, M. C., & Maia, L. C. (2018). Predictors of arbuscular mycorrhizal fungal communities in the Brazilian tropical dry forest. Microbial Ecology, 75, 447–458.
Winagraski, E., Kaschuk, G., Monteiro, P. H. R., Auer, C. G., & Higa, A. R. (2019). Diversity of arbuscular mycorrhizal fungi in forest ecosystems of Brazil: a review. Cerne, 25, 25–35.
Silva-Filho, A. G., Mombert, A., Nascimento, C. C., Nóbrega, B. B., Soares, D. M., Martins, A. G., & Menolli, N., Jr. (2023). Eoscyphella luciurceolata gen. and sp. Nov. (Agaricomycetes) Shed Light on Cyphellopsidaceae with a New Lineage of Bioluminescent Fungi. Journal of Fungi, 9(10), 1004.
Omachi, C. Y., Tamanaha, M. D. S., & Proença, L. A. D. O. (2007). Bloom of Alexandrium fraterculus in coastal waters off Itajaí, SC, Southern Brazil. Brazilian Journal of Oceanography, 55, 57–61.
Menezes, M., Branco, S., Miotto, M. C., & Alves-de-Souza, C. (2018). The Genus Alexandrium (Dinophyceae, Dinophyta) in Brazilian Coastal Waters. Frontiers in Marine Science, 5, 421.
Colepicolo, P., Camarero, V. C. P. C., & Hastings, J. W. (1992). A circadian rhythm in the activity of superoxide dismutase in the photosynthetic alga Gonyaulax polyedra. Chronobiology international, 9(4), 266–268.
Colepicolo, P., Roenneberg, T., Morse, D., Taylor, W. R., & Hastings, J. W. (1993). Circadian Regulation of Bioluminescence in the Dinoflagellate Pyrocystis lunula 1. Journal of Phycology, 29(2), 173–179.
Nunes, C. C. S., Susini-Ribeiro, S. M. M., & Cavalcante, K. P. (2019). Dinoflagellates in tropical estuarine waters from the Maraú River, Camamu Bay, northeastern Brazil. Check List, 15(5), 951–963.
Nunes, C. C., da Silva, D. M. L., Ribeiro, S. M. M. S., & de Castro Nunes, J. M. (2023). Spatio-temporal variation of dinoflagellates in a tropical anthropized estuary in northeastern Brazil. Regional Studies in Marine Science, 65, 103090.
Tocci, B. R. C., Moser, G. A. O., & Ciotti, A. M. (2023). Phytoplankton composition from Araçá Bay and São Sebastião Channel, São Paulo. Brazil. Biota Neotropica, 23, e20211260.
Abrahams, M. V., & Townsend, L. D. (1993). Bioluminescence in dinoflagellates: a test of the burgular alarm hypothesis. Ecology, 74(1), 258–260.
Maldonado, E. M., & Latz, M. I. (2007). Shear-stress dependence of dinoflagellate bioluminescence. The Biological Bulletin, 212(3), 242–249.
Mensinger, A. F., & Case, J. F. (1992). Dinoflagellate luminescence increases susceptibility of zooplankton to teleost predation. Marine Biology, 112, 207–210.
Rigby, K., & Selander, E. (2021). Predatory cues drive colony size reduction in marine diatoms. Ecology and Evolution, 11(16), 11020–11027.
Schnitzler, C. E., Pang, K., Powers, M. L., Reitzel, A. M., Ryan, J. F., Simmons, D., & Baxevanis, A. D. (2012). Genomic organization, evolution, and expression of photoprotein and opsin genes in Mnemiopsis leidyi: a new view of ctenophore photocytes. BMC Biology, 10, 1–26.
Zimmer, M. (2009). GFP: From jellyfish to the Nobel prize and beyond. Chemical Society Reviews, 38(10), 2823–2832.
Oliveira, O. M., & Migotto, A. E. (2006). Pelagic ctenophores from the São Sebastião Channel, southeastern Brazil. Zootaxa, 1183(1), 1–26.
Oliveira, O. M., Miranda, T. P., Araujo, E. M., Ayon, P., Cedeno-Posso, C. M., Cepeda-Mercado, A. A., & Marques, A. C. (2016). Census of Cnidaria (Medusozoa) and Ctenophora from south American marine waters. Zootaxa, 4194(1), 1–256.
Shimomura, O., Masugi, T., Johnson, F. H., & Haneda, Y. (1978). Properties and reaction mechanism of the bioluminescence system of the deep-sea shrimp Oplophorus gracilorostris. Biochemistry, 17(6), 994–998.
Latz, M. I., & Case, J. F. (1992). Slow photic and chemical induction of bioluminescence in the midwater shrimp. Sergestes similis Hansen. The Biological Bulletin, 182(3), 391–400.
Schweikert, L. E., Davis, A. L., Johnsen, S., & Bracken-Grissom, H. D. (2020). Visual perception of light organ patterns in deep-sea shrimps and implications for conspecific recognition. Ecology and Evolution, 10(17), 9503–9513.
Alves-Júnior, F. A., Bertrand, A., Melo, P. A. M. C., Correia, É. P., Figueiredo, L. G. P., & Neumann-Leitão, S. (2018). (First record of a rare deep-sea copepod, Gaussia intermedia Defaye, 1998 (Calanoida, Metridinidae), from the Atlantic Ocean. Crustaceana, 91(4), 501–508.
de Almeida Alves-Júnior, F., de Sá Leitão Câmara de Araújo, M., Carsoso, I. A., Bertrand, A., & Souza-Filho, J. F. (2019). Meso-and bathypelagic prawns of the superfamilies Penaeoidea Rafinesque, 181 and Sergestoidea Dana, 185 (Crustacea: Decapoda: Dendrobranchiata) from Southwestern Atlantic: new records and bathymetric distribution. Thalassas An International Journal of Marine Sciences, 35, 465–484.
Marazzo, A., & Valentin, J. L. (2001). Spatial and temporal variations of Penilia avirostris and Evadne tergestina (Crustacea, Branchiopoda) in a tropical bay, Brazil. Hydrobiologia, 445, 133–139.
Verdes, A., & Gruber, D. F. (2017). Glowing worms: Biological, chemical, and functional diversity of bioluminescent annelids. Integrative and Comparative Biology, 57(1), 18–32.
Rodionova, N. S., Rota, E., Tsarkova, A. S., & Petushkov, V. N. (2017). Progress in the study of bioluminescent earthworms. Photochemistry and Photobiology, 93(2), 416–428.
Tsarkova, A. S., Kaskova, Z. M., & Yampolsky, I. V. (2016). A tale of two luciferins: fungal and earthworm new bioluminescent systems. Accounts of Chemical Research, 49(11), 2372–2380.
Kanie, S., Miura, D., Jimi, N., Hayashi, T., Nakamura, K., Sakata, M., & Mitani, Y. (2021). Violet bioluminescent Polycirrus sp. (Annelida: Terebelliformia) discovered in the shallow coastal waters of the Noto Peninsula in Japan. Scientific Reports, 11(1), 19097.
Deheyn, D. D., & Latz, M. I. (2009). Internal and secreted bioluminescence of the marine polychaete Odontosyllis phosphorea (Syllidae). Invertebrate Biology, 128(1), 31–45.
Jamieson, B. G. M., & Wampler, J. E. (1979). Bioluminescent Australian Earthworms II. Taxonomy and Preliminary Report of Bioluminescence in the General Spenceriella, Fletcherodrilus and Pontodrilus (Megascolecidae: Oligochaeta). Australian Journal of Zoology, 27(4), 637–669.
Viviani, V. American Society for Photobiology. (2007). Terrestrial Bioluminescence. Photobiological Sciences Online American Society for Photobiology, P1 Online Recourse. McLean, VA : Americal Society of Photobiology.
Branchini, B. R., Behney, C. E., Southworth, T. L., Rawat, R., & Deheyn, D. D. (2014). Chemical analysis of the luminous slime secreted by the marine worm Chaetopterus (Annelida, Polychaeta). Photochemistry and Photobiology, 90(1), 247–251.
Gaston, G. R., & Hall, J. (2000). Lunar periodicity and bioluminescence of swarming Odontosyllis luminosa (Polychaeta: Syllidae) in Belize. Gulf and Caribbean Research, 12(1), 47–51.
Fukuda, M. V., & de Matos Nogueira, J. M. (2006). A new species of Odontosyllis Claparède, 1863 (Polychaeta: Syllidae: Eusyllinae), and description of Brazilian material of Odontosyllis cf. fulgurans (Audouin and Milne Edwards, 1834). Zoological Sudies-Taipei, 45(2), 223.
Jimi, N., Bessho-Uehara, M., Nakamura, K., Sakata, M., Hayashi, T., Kanie, S., & Ogoh, K. (2023). Investigating the diversity of bioluminescent marine worm Polycirrus (Annelida), with description of three new species from the Western Pacific. Royal Society Open Science, 10(3), 230039.
Mitani, Y., Yasuno, R., Isaka, M., Mitsuda, N., Futahashi, R., Kamagata, Y., & Ohmiya, Y. (2018). Novel gene encoding a unique luciferase from the fireworm Odontosyllis undecimdonta. Scientific Reports, 8(1), 12789.
Fukuda, M. V., Nogueira, J. M. D. M., Paresque, K., & San Martin, G. (2013). Species of Odontosyllis Claparède, 1863 (Annelida: Polychaeta: Syllidae) occurring along the Brazilian coast. Zootaxa, 3609(2), 142–162.
Paresque, K., Fukuda, M. V., San Martin, G., & Nogueira, J. M. D. M. (2015). Amblyosyllis, Eusyllis, Odontosyllis, Perkinsyllis and Streptodonta (Annelida: Syllidae) from Brazil, with descriptions of two new species and new records for the country. Zootaxa, 4000(3), 301–334.
Carrerette, O., & Nogueira, J. M. (2013). Four new species of Polycirrus Grube, 1850 (Polychaeta: Terebellidae) from Campos Basin, southeastern Brazil. Zootaxa, 3626, 146–172.
Nogueira, J. M. D. M., van Deursen, P. F., Ranauro, N., & Carrerette, O. (2020). On Polycirrus changbunker sp. nov. (Annelida: Terebelliformia: Polycirridae), a new species of polycirrid worms from southwestern Atlantic. Zoosymposia, 19, 185–197.
Kawauchi, G. Y., & Rice, M. E. (2009). Two new species of Nephasoma (Sipuncula: Golfingiidae) from the western Atlantic Ocean. Proceedings of the Biological Society of Washington, 122(1), 1–13.
Hastings, J. W., & Johnson, C. H. (2003). Bioluminescence and chemiluminescence. Methods in enzymology (Vol. 360, pp. 75–104). Academic press.
Kuse, M. (2014). Chromophores in photoproteins of a glowing squid and mollusk. Bioscience, Biotechnology, and Biochemistry, 78(5), 731–736.
Girsch, S. J., Herring, P. J., & McCapra, F. (1976). Structure and preliminary biochemical characterization of the bioluminescent system of Ommastrephes pteropus (Steenstrup) (Mollusca: Cephalopoda). Journal of the Marine Biological Association of the United Kingdom, 56(3), 707–722.
Johnsen, S., Balser, E. J., Fisher, E. C., & Widder, E. A. (1999). Bioluminescence in the deep-sea cirrate octopod Stauroteuthis syrtensis Verrill (Mollusca: Cephalopoda). The Biological Bulletin, 197(1), 26–39.
Tsuji, F. I. (1983). Molluscan bioluminescence. The mollusca (pp. 257–279). Academic Press.
Barrera-Oro, E. (2002). The role of fish in the Antarctic marine food web: differences between inshore and offshore waters in the southern Scotia Arc and west Antarctic Peninsula. Antarctic Science, 14(4), 293–309.
McCormack, S. A., Melbourne-Thomas, J., Trebilco, R., Griffith, G., Hill, S. L., Hoover, C., & Constable, A. J. (2021). Southern Ocean food web modelling: Progress, prognoses, and future priorities for research and policy makers. Frontiers in Ecology and Evolution. https://doi.org/10.3389/fevo.2021.624763
Mincarone, M. M., Eduardo, L. N., Di Dario, F., Frédou, T., Bertrand, A., & Lucena-Frédou, F. (2022). New records of rare deep-sea fishes (Teleostei) collected from off north-eastern Brazil, including seamounts and islands of the Fernando de Noronha Ridge. Journal of Fish Biology, 101(4), 945–959.
Amorim, A. D., Arfelli, C. A., & Fagundes, L. (1998). Pelagic elasmobranchs caught by longliners off southern Brazil during 1974–97: an overview. Marine and Freshwater Research, 49(7), 621–632.
Gianeti, M. D., & Vooren, C. M. (2008). Identification of the sharks of the genus Etmopterus Rafinesque, 1810 (Elasmobranchii: Etmopteridae) from the upper slope of southern Brazil, with comparison between the species E. bigelowi Shirai & Tachikawa, 1993 and E. pusillus Lowe, 1839. Brazilian Journal of Oceanography, 56, 139–143.
Mourato, B. L., Coelho, R., Amorim, A. F., Carvalho, F. C., Hazin, F. H., & Burgess, G. (2010). Size at maturity and length-weight relationships of the blurred lantern shark Etmopterus bigelowi (Squaliformes: Etmopteridae) caught off southeastern Brazil. Ciencias Marinas, 36(4), 323–331.
Rocha, R. M. D., & Bonnet, N. Y. (2009). Introduced ascidians (Tunicata, Ascidiacea) in the Arquipélago de Alcatrazes, State of São Paulo. Brazil. Iheringia. Série Zoologia, 99, 27–35.
Dias, G. M., Rocha, R. M., Lotufo, T. M. D. C., & Kremer, L. P. (2013). Fifty years of ascidian biodiversity research in São Sebastião, Brazil. Journal of the Marine Biological Association of the United Kingdom, 93(1), 273–282.
Tessler, M., Gaffney, J. P., Oliveira, A. G., Guarnaccia, A., Dobi, K. C., Gujarati, N. A., & Gruber, D. F. (2020). A putative chordate luciferase from a cosmopolitan tunicate indicates convergent bioluminescence evolution across phyla. Scientific Reports, 10(1), 17724.
Grober, M. S. (1988). Brittle-star bioluminescence functions as an aposematic signal to deter crustacean predators. Animal Behaviour, 36(2), 493–501.
Jones, A., & Mallefet, J. (2013). Why do brittle stars emit light? Behavioural and evolutionary approaches of bioluminescence. Cahiers de Biologie Marine, 54(4), 729–734.
Hendler, G. (1996). Taxonomic Atlas of the benthic fauna of the Santa Maria Basin and western Santa Barbara Channel. Class Ophiuroidea. Miscellaneous Taxa. Santa Barbara Museum of Natural History, Santa Barbara, Irene McCulloch Foundation Monograph Series, 14, 113–179.
Gondim, A. I., Alonso, C., Dias, T. L., Manso, C. L., & Christoffersen, M. L. (2013). A taxonomic guide to the brittle-stars (Echinodermata, Ophiuroidea) from the State of Paraíba continental shelf. Northeastern Brazil. ZooKeys, 307, 45.
Viviani, V. R., & Bechara, E. J. (1993). Biophysical and biochemical aspects of phengodid (railroad-worm) bioluminescence. Photochemistry and Photobiology, 58(4), 615–622.
Viviani, V. R., & Ohmiya, Y. (2000). Bioluminescence color determinants of Phrixothrix Railroad-worm luciferases: Chimeric Luciferases, Site-directed Mutagenesis of Arg 215 and Guanidine effect. Photochemistry and Photobiology, 72(2), 267–271.
Costa, C., Vanin, S. A., Casari, S. A., & Viviani, V. R. (1999). Larvae of neotropical Coleoptera. XXVII. Phrixothrix hirtus: Immatures, neotenic female, adult male and bionomic data (Phengodinae, Phengodidae, Coleoptera). Iheringia. Sér. Zool., 86, 9–28.
Widder, E. (2002). Bioluminescence and the pelagic visual environment. Marine and Freshwater Behaviour and Physiology, 35(1–2), 1–26.
Martini, S., & Haddock, S. H. (2017). Quantification of bioluminescence from the surface to the deep sea demonstrates its predominance as an ecological trait. Scientific reports, 7(1), 45750.
Srivastava, A., & Katiyar, K. (2021). The Ecology of Bioluminescence. Bioluminescence-Technology and Biology. IntechOpen.
Anderson, D. M., Alpermann, T. J., Cembella, A. D., Collos, Y., Masseret, E., & Montresor, M. (2012). The globally distributed genus Alexandrium: multifaceted roles in marine ecosystems and impacts on human health. Harmful Algae, 14, 10–35.
Kotlobay, A. A., Dubinnyi, M. A., Kovalchuk, S. I., Makhin, A. P., Miturich, V. S., Lyakhovich, M. S., & Kaskova, Z. M. (2023). Structure elucidation of Keroplatus (Diptera: Keroplatidae) fungus gnat oxyluciferin. Biochemical and Biophysical Research Communications. https://doi.org/10.1016/j.bbrc.2023.07.035
Mitani, Y., Yasuno, R., Futahashi, R., Oakley, T. H., & Ohmiya, Y. (2019). Luciferase gene of a Caribbean fireworm (Syllidae) from Puerto Rico. Scientific Reports, 9(1), 13015.
Purtov, K. V., Petushkov, V. N., Rodionova, N. S., Pakhomova, V. G., Myasnyanko, I. N., Myshkina, N. M., & Gitelson, J. I. (2019). Luciferin-Luciferase System of Marine Polychaete Chaetopterus variopedatus. Doklady Biochemistry and Biophysics (Vol. 486, pp. 209–212). Pleiades Publishing.
Martini, S., Kuhnz, L., Mallefet, J., & Haddock, S. H. (2019). Distribution and quantification of bioluminescence as an ecological trait in the deep sea benthos. Scientific reports, 9(1), 14654.
Vysotski, E. S. (2022). Bioluminescent and fluorescent proteins: molecular mechanisms and modern applications. International Journal of Molecular Sciences, 24(1), 281.
Shimomura, O. (2006). The photoproteins. In S. Daunert & Deo S. K.(Eds.), Photoproteins in Bioanalysis,Wiley‐VCH Verlag GmbH & Co. KGaA.
Eremeeva, E. V., Bartsev, S. I., van Berkel, W. J., & Vysotski, E. S. (2017). Unanimous model for describing the fast bioluminescence kinetics of Ca2+-regulated photoproteins of different organisms. Photochemistry and Photobiology, 93(2), 495–502.
Shimomura, O. (1985). Bioluminescence in the sea: photoprotein systems. Symposia of the Society for Experimental Biology, 39, 351–372.
Gorokhovatsky, A. Y., Marchenkov, V. V., Rudenko, N. V., Ivashina, T. V., Ksenzenko, V. N., Burkhardt, N., & Alakhov, Y. B. (2004). Fusion of Aequorea victoria GFP and aequorin provides their Ca2+-induced interaction that results in red shift of GFP absorption and efficient bioluminescence energy transfer. Biochemical and Biophysical Research Communications, 320(3), 703–711.
Xiong, T. C., Ronzier, E., Sanchez, F., Corratgé-Faillie, C., Mazars, C., & Thibaud, J. B. (2014). Imaging long distance propagating calcium signals in intact plant leaves with the BRET-based GFP-aequorin reporter. Frontiers in Plant Science, 5, 43.
Bakayan, A., Domingo, B., Miyawaki, A., & Llopis, J. (2015). Imaging Ca 2+ activity in mammalian cells and zebrafish with a novel red-emitting aequorin variant. Pflügers Archiv-European Journal of Physiology, 467, 2031–2042.
Alonso, M. T., Torres-Vidal, P., Calvo, B., Rodriguez, C., Delrio-Lorenzo, A., Rojo-Ruiz, J., & Patel, S. (2023). Use of aequorin-based indicators for monitoring Ca2+ in acidic organelles. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1870, 119481.
Lismont, E., Verbakel, L., Vogel, E., Corbisier, J., Degroot, G. N., Verdonck, R., & Broeck, J. V. (2020). Can BRET-based biosensors be used to characterize G-protein mediated signaling pathways of an insect GPCR, the Schistocerca gregaria CRF-related diuretic hormone receptor? Insect Biochemistry and Molecular Biology, 122, 103392.
Shrestha, S., & Deo, S. K. (2006). Anthozoa red fluorescent protein in biosensing. Analytical and bioanalytical chemistry, 386, 515–524.
Belleti, E., Bevilaqua, V. R., Brito, A. M., Modesto, D. A., Lanfredi, A. J., Viviani, V. R., & Nantes-Cardoso, I. L. (2021). Synthesis of bioluminescent gold nanoparticle–luciferase hybrid systems for technological applications. Photochemical & Photobiological Sciences, 20, 1439–1453.
Bevilaqua, V. R., Matsuhashi, T., Oliveira, G., Oliveira, P. S. L., Hirano, T., & Viviani, V. R. (2019). Phrixothrix luciferase and 6′-aminoluciferins reveal a larger luciferin phenolate binding site and provide novel far-red combinations for bioimaging purposes. Scientific reports, 9(1), 8998.
Oliveira, G., & Viviani, V. R. (2019). Temperature effect on the bioluminescence spectra of firefly luciferases: Potential applicability for ratiometric biosensing of temperature and pH. Photochemical & Photobiological Sciences, 18, 2682–2687.
Pelentir, G. F., Bevilaqua, V. R., & Viviani, V. R. (2019). A highly efficient, thermostable and cadmium selective firefly luciferase suitable for ratiometric metal and pH biosensing and for sensitive ATP assays. Photochemical & Photobiological Sciences, 18, 2061–2070.
Biffi, G., Rosa, S. P., & Kundrata, R. (2021). Hide-and-seek with tiny neotenic beetles in one of the hottest biodiversity hotspots: Towards an understanding of the real diversity of Jurasaidae (Coleoptera: Elateroidea) in the Brazilian Atlantic Forest. Biology, 10(5), 420.
Lewis, S. M., Wong, C. H., Owens, A. C., Fallon, C., Jepsen, S., Thancharoen, A., & Reed, J. M. (2020). A global perspective on firefly extinction threats. BioScience, 70(2), 157–167.
Stewart, A. J. (2021). Impacts of artificial lighting at night on insect conservation. Insect Conservation and Diversity, 14(2), 163–166.
Vaz, S., Manes, S., Gama-Maia, D., Silveira, L., Mattos, G., Paiva, P. C., & Lorini, M. L. (2021). Light pollution is the fastest growing potential threat to firefly conservation in the Atlantic Forest hotspot. Insect Conservation and Diversity, 14(2), 211–224.
Viviani, V. R., Rosa, S. P., Prado, R. A., Pelentir, G. F., de Souza, D. R., Reis, R. M., & Costa, C. (2023). Inventory and ecological aspects of bioluminescent beetles in the Cerrado ecosystem and its decline around Emas National Park (Brazil). Annals of the Entomological Society of America. https://doi.org/10.1093/aesa/saad029
Melnik, A. V., Melnikov, V. V., Serebrennikov, A. N., Melnik, L. A., & Mashukova, O. V. (2019). Biooceanographic characteristics of the bioluminescence fields in the Sevastopol coastal waters: Results of longterm monitoring. Sistemy KontrolyaOokruzhayushchei Sredy, 1, 35.
Otjacques, E., Pissarra, V., Bolstad, K., Xavier, J. C., McFall-Ngai, M., & Rosa, R. (2023). Bioluminescence in cephalopods: biodiversity, biogeography and research trends. Frontiers in Marine Science. https://doi.org/10.3389/fmars.2023.1161049
Keles, D., Delacote, P., Pfaff, A., Qin, S., & Mascia, M. B. (2020). What drives the erasure of protected areas? Evidence from across the Brazilian Amazon. Ecological Economics, 176, 106733.
Overbeck, G. E., Vélez-Martin, E., Scarano, F. R., Lewinsohn, T. M., Fonseca, C. R., Meyer, S. T., & Pillar, V. D. (2015). Conservation in Brazil needs to include non-forest ecosystems. Diversity and Distributions, 21(12), 1455–1460.
Pfaff, A., Robalino, J., Herrera, D., & Sandoval, C. (2015). Protected areas’ impacts on Brazilian Amazon deforestation: examining conservation–development interactions to inform planning. PLoS ONE, 10(7), e0129460.
Christensen, M., & Jokar Arsanjani, J. (2020). Stimulating implementation of sustainable development goals and conservation action: predicting future land use/cover change in Virunga National Park. Congo. Sustainability, 12(4), 1570.
Kohler, F., & Brondizio, E. S. (2017). Considering the needs of indigenous and local populations in conservation programs. Conservation Biology, 31(2), 245–251.
Fonseca, C. R., & Venticinque, E. M. (2018). Biodiversity conservation gaps in Brazil: a role for systematic conservation planning. Perspectives in Ecology and Conservation, 16(2), 61–67.
Sparovek, G., Barretto, A. G. D. O. P., Matsumoto, M., & Berndes, G. (2015). Effects of governance on availability of land for agriculture and conservation in Brazil. Environmental Science & Technology, 49(17), 10285–10293.
Nichols, J. D., & Williams, B. K. (2006). Monitoring for conservation. Trends in Ecology & Evolution, 21(12), 668–673.
Longcore, T., & Rich, C. (2004). Ecological light pollution. Frontiers in Ecology and the Environment, 2(4), 191–198.
Horváth, G., Kriska, G., Malik, P., & Robertson, B. (2009). Polarized light pollution: a new kind of ecological photopollution. Frontiers in Ecology and the Environment, 7(6), 317–325.
Stathakis, D., Liakos, L., Chalkias, C., & Pafi, M. (2018). A photopollution index based on weighted cumulative visibility to night lights. Remote Sensing Technologies and Applications in Urban Environments III (Vol. 10793, p. 1079304). SPIE.
Blume, C., Garbazza, C., & Spitschan, M. (2019). Effects of light on human circadian rhythms, sleep and mood. Somnologie, 23(3), 147.
Bocheva, G., Slominski, R. M., & Slominski, A. T. (2023). Environmental air pollutants affecting skin functions with systemic implications. International Journal of Molecular Sciences, 24(13), 10502.
Owens, A., Van den Broeck, M., De Cock, R., & Lewis, S. M. (2022). Behavioral responses of bioluminescent fireflies to artificial light at night. Frontiers in Ecology and Evolution, 10, 946640.
Owens, A. C., & Lewis, S. M. (2018). The impact of artificial light at night on nocturnal insects: a review and synthesis. Ecology and Evolution, 8(22), 11337–11358.
Manfrin, A., Singer, G., Larsen, S., Weiß, N., Van Grunsven, R. H., Weiß, N. S., & Hölker, F. (2017). Artificial light at night affects organism flux across ecosystem boundaries and drives community structure in the recipient ecosystem. Frontiers in Environmental Science, 5, 61.
Wilson, P., Thums, M., Pattiaratchi, C., Meekan, M., Pendoley, K., Fisher, R., & Whiting, S. (2018). Artificial light disrupts the nearshore dispersal of neonate flatback turtles Natator depressus. Marine Ecology Progress Series, 600, 179–192.
Witherington, B. E. (1997). The problem of photopollution for sea turtles and other nocturnal animals. Behavioral Approaches to Conservation in the Wild, 303–328
Roza, A. S., Mermudes, J. R. M., & Silveira, L. F. L. D. (2022). A new genus and two new species of fireflies from South America (Lampyridae: Lampyrinae: Photinini). Diversity, 14(11), 1005.
Viviani, V. R., Silva, J. R., & Ho, P. L. (2021). A novel brighter bioluminescent fusion protein based on ZZ domain and Amydetes vivianii firefly luciferase for immunoassays. Frontiers in Bioengineering and Biotechnology, 9, 755045.
Delprete, P. G., & Jardim, J. G. (2012). Systematics, taxonomy and floristics of Brazilian Rubiaceae: an overview about the current status and future challenges. Rodriguésia, 63, 101–128.
Acknowledgements
We would like to express our sincere gratitude to the reviewers for their contributions to the final preparation of our manuscript. Your feedback and insightful suggestions have been invaluable in enhancing the clarity, accuracy, and overall quality of our work.
Funding
We acknowledge the support of São Paulo Research Foundation (FAPESP 2022/09910-9 to D.T.A. and FAPESP 2018/17855-2 to D.R.S.) and Yeshiva University start-up fund to A.G.O.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors have no relevant financial or non-financial interests to disclose.
Supplementary Information
Below is the link to the electronic supplementary material.
43630_2024_590_MOESM1_ESM.pdf
Supplementary file1 Figure S1. Captivating Diversity of Brazilian Bioluminescent Species Organized by Families. Utilizing Occurrence Dataset Accesses: GBIF.org (17 July 2023) GBIF Occurrence Download https://doi.org/https://doi.org/10.15468/dl.c9hktd); GBIF.org (18 July 2023) GBIF Occurrence Download https://doi.org/https://doi.org/10.15468/dl.5zrd5d); GBIF.org (21 July 2023) GBIF Occurrence Download https://doi.org/https://doi.org/10.15468/dl.x3p7qn. (PDF 3030 KB)
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Amaral, D.T., Kaplan, R.A., Takishita, T.K.E. et al. Glowing wonders: exploring the diversity and ecological significance of bioluminescent organisms in Brazil. Photochem Photobiol Sci 23, 1373–1392 (2024). https://doi.org/10.1007/s43630-024-00590-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s43630-024-00590-x