Skip to main content
Log in

Epoxiconazole degradation in water samples: a comparative study of Fenton, photo-Fenton, solar photo-Fenton, and solar photolysis processes

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Epoxiconazole (EPO) is classified as a persistent organic pollutant due to its ability to persist in the environment for prolonged periods. Its degradation is pivotal in mitigating its environmental impact. This investigation focuses on assessing the degradation of EPO using various methodologies, namely Fenton, photo-Fenton, solar photo-Fenton, and solar photolysis, conducted in both Milli-Q water and groundwater. These experiments encompassed evaluations at both the standard pH typically used in photo-Fenton reactions and the natural pH levels inherent to the respective aqueous environments. Additionally, EPO degradation products were analyzed after a 60-min reaction. Notably, in systems utilizing groundwater, the inclusion of additional iron was unnecessary, as the naturally occurring iron content in the groundwater facilitated the intended processes. Specifically, in Milli-Q water, solar photo-Fenton demonstrated an EPO degradation efficiency of 97%. Furthermore, the substitution of Milli-Q water with groundwater in Fenton-like processes did not significantly affect the efficacy of EPO degradation. These findings underscore the potential of solar photo-Fenton as an economically viable and environmentally sustainable strategy for EPO degradation.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the paper and its Supplementary Information files. Should any raw data files be needed in another format they are available from the corresponding author upon reasonable request.

References

  1. Xue, P., Liu, X., Jia, H., Yuan, H., Liu, B., Zhang, J., & He, Z. (2022). Environmental behavior of the chiral fungicide epoxiconazole in earthworm-soil system: Enantioselective enrichment, degradation kinetics, chiral metabolite identification, and biotransformation mechanism. Environment International, 167, 107442. https://doi.org/10.1016/j.envint.2022.107442

    Article  CAS  PubMed  Google Scholar 

  2. Lv, X., Pan, L., Wang, J., Lu, L., Yan, W., Zhu, Y., Xu, Y., Guo, M., & Zhuang, S. (2017). Effects of triazole fungicides on androgenic disruption and CYP3A4 enzyme activity. Environmental Pollution, 222, 504–512. https://doi.org/10.1016/j.envpol.2016.11.051

    Article  CAS  PubMed  Google Scholar 

  3. Gleeson, T., Befus, K. M., Jasechko, S., Luijendijk, E., & Cardenas, M. B. (2016). The global volume and distribution of modern groundwater. Nature Geosci, 9, 161–167. https://doi.org/10.1038/ngeo2590

    Article  CAS  Google Scholar 

  4. Kanakaraju, D., Glass, B. D., & Oelgemöller, M. (2018). Advanced oxidation process-mediated removal of pharmaceuticals from water: A review. Journal of Environmental Management, 219, 189–207. https://doi.org/10.1016/j.jenvman.2018.04.103

    Article  CAS  PubMed  Google Scholar 

  5. Bartolomeu, M., Neves, M. G. P. M. S., Faustino, M. A. F., & Almeida, A. (2018). Wastewater chemical contaminants: remediation by advanced oxidation processes. Photochemical & Photobiological Sciences, 17, 1573–1598. https://doi.org/10.1039/C8PP00249E

    Article  CAS  Google Scholar 

  6. Ahile, U. J., Wuana, R. A., Itodo, A. U., Sha’Ato, R., & Dantas, R. F. (2020). A review on the use of chelating agents as an alternative to promote photo-Fenton at neutral pH: Current trends, knowledge gap and future studies. Science of The Total Environment, 710, 134872. https://doi.org/10.1016/j.scitotenv.2019.134872

    Article  CAS  PubMed  Google Scholar 

  7. Conte, L. O., Schenone, A. V., Giménez, B. N., & Alfano, O. M. (2019). Photo-Fenton degradation of a herbicide (2,4-d) in groundwater for conditions of natural pH and presence of inorganic anions. Journal of Hazardous Materials, 372, 113–120. https://doi.org/10.1016/j.jhazmat.2018.04.013

    Article  CAS  PubMed  Google Scholar 

  8. Reynoso, A., Zizzias, J., Sacchetto, J., Gambetta, C., Natera, J., & Massad, W. A. (2021). Complete benzothiazole elimination by the solar photo-Fenton process in aqueous and β-cyclodextrin solutions. New Journal of Chemistry, 45, 20214–20218. https://doi.org/10.1039/D1NJ02483C

    Article  CAS  Google Scholar 

  9. Possetto, D., Natera, J., Sancho, M. I., García, N. A., & Massad, W. A. (2018). Bioallethrin degradation by photo-Fenton process in acetonitrile/water and aqueous β-cyclodextrin solutions. Journal of Photochemistry and Photobiology A: Chemistry, 365, 103–109. https://doi.org/10.1016/j.jphotochem.2018.07.036

    Article  CAS  Google Scholar 

  10. Dong, H., Xu, L., Mao, Y., Wang, Y., Duan, S., Lian, J., Li, J., Yu, J., & Qiang, Z. (2021). Effective abatement of 29 pesticides in full-scale advanced treatment processes of drinking water: From concentration to human exposure risk. Journal of Hazardous Materials, 403, 123986. https://doi.org/10.1016/j.jhazmat.2020.123986

    Article  CAS  PubMed  Google Scholar 

  11. Murthy, N. B. K., Hustert, K., Moza, P. N., & Kettrup, A. (1998). Photodegradation of selected fungicides on soil. Fresenius Environmental Bulletin, 7, 112–117.

    CAS  Google Scholar 

  12. Pacholak, A., Burlaga, N., Frankowski, R., Zgoła-Grześkowiak, A., & Kaczorek, E. (2022). Azole fungicides: (Bio)degradation, transformation products and toxicity elucidation. Science of The Total Environment, 802, 149917. https://doi.org/10.1016/j.scitotenv.2021.149917

    Article  CAS  PubMed  Google Scholar 

  13. Bryant, M., & Latimer, G. W. (Eds.). (2023). Water. Oxford University Press. https://doi.org/10.1093/9780197610145.003.078

    Book  Google Scholar 

  14. 2130 Turbidity. (2017). In Standard Methods For the Examination of Water and Wastewater Standard Methods for the Examination of Water and Wastewater. American Public Health Association. https://doi.org/10.2105/SMWW.2882.018

  15. 4500-NO3--nitrogen (nitrate) (2017) In Standard Methods For the Examination of Water and Wastewater Standard Methods for the Examination of Water and Wastewater. American Public Health Association. https://doi.org/10.2105/SMWW.2882.089

  16. 2320 Alkalinity (2017) In Standard Methods For the Examination of Water and Wastewater Standard Methods for the Examination of Water and Wastewater. American Public Health Association. https://doi.org/10.2105/SMWW.2882.023

  17. 3125 Metals by Inductively Coupled Plasma-Mass Spectrometry (2017) In Standard Methods For the Examination of Water and Wastewater Standard Methods for the Examination of Water and Wastewater. American Public Health Association.

  18. Nogueira, R. F. P., Oliveira, M. C., & Paterlini, W. C. (2005). Simple and fast spectrophotometric determination of H2O2 in photo-Fenton reactions using metavanadate. Talanta, 66, 86–91. https://doi.org/10.1016/j.talanta.2004.10.001

    Article  CAS  PubMed  Google Scholar 

  19. Subramanian, G., & Madras, G. (2016). Introducing saccharic acid as an efficient iron chelate to enhance photo-Fenton degradation of organic contaminants. Water Research, 104, 168–177. https://doi.org/10.1016/j.watres.2016.07.070

    Article  CAS  PubMed  Google Scholar 

  20. Konášová, R., Dytrtová, J. J., & Kašička, V. (2015). Determination of acid dissociation constants of triazole fungicides by pressure assisted capillary electrophoresis. Journal of Chromatography A, 1408, 243–249. https://doi.org/10.1016/j.chroma.2015.07.005

    Article  CAS  PubMed  Google Scholar 

  21. Mirzaei, A., Chen, Z., Haghighat, F., & Yerushalmi, L. (2017). Removal of pharmaceuticals from water by homo/heterogonous Fenton-type processes—A review. Chemosphere, 174, 665–688. https://doi.org/10.1016/j.chemosphere.2017.02.019

    Article  CAS  PubMed  Google Scholar 

  22. Fischbacher, A., von Sonntag, C., & Schmidt, T. C. (2017). Hydroxyl radical yields in the Fenton process under various pH, ligand concentrations and hydrogen peroxide/Fe(II) ratios. Chemosphere, 182, 738–744. https://doi.org/10.1016/j.chemosphere.2017.05.039

    Article  CAS  PubMed  Google Scholar 

  23. Giménez, B. N., Conte, L. O., Alfano, O. M., & Schenone, A. V. (2020). Paracetamol removal by photo-Fenton processes at near-neutral pH using a solar simulator: Optimization by D-optimal experimental design and toxicity evaluation. Journal of Photochemistry and Photobiology A: Chemistry, 397, 112584. https://doi.org/10.1016/j.jphotochem.2020.112584

    Article  CAS  Google Scholar 

  24. Liu, C., Qiang, Z., Tian, F., & Zhang, T. (2009). Photodegradation of etridiazole by UV radiation during drinking water treatment. Chemosphere, 76, 609–615. https://doi.org/10.1016/j.chemosphere.2009.04.052

    Article  CAS  PubMed  Google Scholar 

  25. Burrows, H. D., Canle, L. M., Santaballa, J. A., & Steenken, S. (2002). Reaction pathways and mechanisms of photodegradation of pesticides. Journal of Photochemistry and Photobiology B: Biology, 67, 71–108. https://doi.org/10.1016/S1011-1344(02)00277-4

    Article  CAS  PubMed  Google Scholar 

  26. Rodríguez-Cabo, T., Rodríguez, I., Ramil, M., & Cela, R. (2018). Evaluation of the aqueous phototransformation routes of phenyl ethyl azolic fungicides by liquid chromatography accurate mass spectrometry. Science of The Total Environment, 615, 942–954. https://doi.org/10.1016/j.scitotenv.2017.10.003

    Article  CAS  PubMed  Google Scholar 

  27. Kavitha, V., & Palanivelu, K. (2004). The role of ferrous ion in Fenton and photo-Fenton processes for the degradation of phenol. Chemosphere, 55, 1235–1243. https://doi.org/10.1016/j.chemosphere.2003.12.022

    Article  CAS  PubMed  Google Scholar 

  28. Buxton, G. V., Greenstock, C. L., Helman, W. P., & Ross, A. B. (1988). Critical Review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (⋅OH/O− in Aqueous Solution. Journal of Physical and Chemical Reference Data, 17, 513–886. https://doi.org/10.1063/1.555805

    Article  CAS  Google Scholar 

  29. Gligorovski, S., Strekowski, R., Barbati, S., & Vione, D. (2015). Environmental Implications of Hydroxyl Radicals (·OH). Chemical Reviews, 115, 13051–13092. https://doi.org/10.1021/cr500310b

    Article  CAS  PubMed  Google Scholar 

  30. Mack, J., & Bolton, J. R. (1999). Photochemistry of nitrite and nitrate in aqueous solution: A review. Journal of Photochemistry and Photobiology A: Chemistry, 128, 1–13. https://doi.org/10.1016/S1010-6030(99)00155-0

    Article  CAS  Google Scholar 

  31. Zhou, H., Lian, L., Yan, S., & Song, W. (2017). Insights into the photo-induced formation of reactive intermediates from effluent organic matter: The role of chemical constituents. Water Research, 112, 120–128. https://doi.org/10.1016/j.watres.2017.01.048

    Article  CAS  PubMed  Google Scholar 

  32. Rodríguez-López, L., Cela-Dablanca, R., Núñez-Delgado, A., Álvarez-Rodríguez, E., Fernández-Calviño, D., & Arias-Estévez, M. (2021). Photodegradation of ciprofloxacin, clarithromycin and trimethoprim: Influence of pH and humic acids. Molecules, 26, 3080.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors express our gratitude to the Secretaría de Ciencia y Técnica of Universidad Nacional de Río Cuarto (SECyT-UNRC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), and Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT), all based in Argentina, for their generous financial support. In addition, the authors would like to thank JLA Argentina S.A. for allowing the use of their facilities and equipment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter A. Massad.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 1730 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sacchetto, J.L., Medina, L.F., Toledo, K.I. et al. Epoxiconazole degradation in water samples: a comparative study of Fenton, photo-Fenton, solar photo-Fenton, and solar photolysis processes. Photochem Photobiol Sci (2024). https://doi.org/10.1007/s43630-024-00582-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43630-024-00582-x

Keywords

Navigation