Skip to main content
Log in

Downregulation of SMAD4 protects HaCaT cells against UVB-induced damage and oxidative stress through the activation of EMT

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

As a member of the SMAD family, SMAD4 plays a crucial role in several cellular biological processes. However, its function in UVB radiation-induced keratinocyte damage is not yet clarified. Our study aims to provide mechanistic insight for the development of future UVB protective therapies and therapeutics involving SMAD4. HaCaT cells were treated with UVB, and the dose dependence and time dependence of UVB were measured. The cell function of UVB-treated HaCaT cells and the activity of epithelial-mesenchymal transition (EMT) after overexpression or silencing of SMAD4 was observed by flow cytometry, quantitative reverse transcription PCR (qRT-PCR) and Western Blots (WB). We found that a significant decrease in SMAD4 was observed in HaCaT cells induced by UVB. Our data confirm SMAD4 as a direct downstream target of miR-664. The down-regulation of SMAD4 preserved the viability of the UVB-treated HaCaT cells by inhibiting autophagy or apoptosis. Furthermore, the silencing of SMAD4 activated the EMT process in UVB-treated HaCaT cells. Down-regulation of SMAD4 plays a protective role in UVB-treated HaCaT cells via the activation of EMT.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data will be made available on request.

References:

  1. Alkhasawneh, A., Duckworth, L. V., George, T. J., Desai, N. V., Sommerfeld, A. J., Lu, X., & Toro, T. Z. (2016). Clinical, morphologic, and immunophenotypic characteristics of ampullary carcinomas with an emphasis on SMAD4 expression. J Gastrointest Oncol, 7(6), 974–981. https://doi.org/10.21037/jgo.2016.06.14

    Article  PubMed  PubMed Central  Google Scholar 

  2. Amani, H., Shahbazi, M. A., D’Amico, C., Fontana, F., Abbaszadeh, S., & Santos, H. A. (2021). Microneedles for painless transdermal immunotherapeutic applications. Journal of Controlled Release, 330, 185–217. https://doi.org/10.1016/j.jconrel.2020.12.019

    Article  CAS  PubMed  Google Scholar 

  3. Chaudhary, S. C., Waseem, M., Rana, M., Xu, H., Kopelovich, L., Elmets, C. A., & Athar, M. (2017). Naproxen inhibits UVB-induced basal cell and squamous cell carcinoma development in Ptch1(+/-) /SKH-1 hairless mice. Photochemistry and Photobiology, 93(4), 1016–1024. https://doi.org/10.1111/php.12758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Clayton, D. A., Doda, J. N., & Friedberg, E. C. (1974). The absence of a pyrimidine dimer repair mechanism in mammalian mitochondria. Proc Natl Acad Sci U S A, 71(7), 2777–2781. https://doi.org/10.1073/pnas.71.7.2777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Connolly, E. C., Freimuth, J., & Akhurst, R. J. (2012). Complexities of TGF-beta targeted cancer therapy. International Journal of Biological Sciences, 8(7), 964–978. https://doi.org/10.7150/ijbs.4564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cullinane, C., & Bohr, V. A. (1998). DNA interstrand cross-links induced by psoralen are not repaired in mammalian mitochondria. Cancer Research, 58(7), 1400–1404.

    CAS  PubMed  Google Scholar 

  7. David, C. J., Huang, Y. H., Chen, M., Su, J., Zou, Y., Bardeesy, N., Iacobuzio-Donahue, C. A., & Massagué, J. (2016). TGF-β Tumor Suppression through a Lethal EMT. Cell, 164(5), 1015–1030. https://doi.org/10.1016/j.cell.2016.01.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Deng, H., Wan, M., Li, H., Chen, Q., Li, R., Liang, B., & Zhu, H. (2021). Curcumin protection against ultraviolet-induced photo-damage in Hacat cells by regulating nuclear factor erythroid 2-related factor 2. Bioengineered, 12(2), 9993–10006. https://doi.org/10.1080/21655979.2021.1994720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Derynck, R., Akhurst, R. J., & Balmain, A. (2001). TGF-beta signaling in tumor suppression and cancer progression. Nature Genetics, 29(2), 117–129. https://doi.org/10.1038/ng1001-117

    Article  CAS  PubMed  Google Scholar 

  10. Diffey, B. L. (2002). Sources and measurement of ultraviolet radiation. Methods, 28(1), 4–13. https://doi.org/10.1016/s1046-2023(02)00204-9

    Article  CAS  PubMed  Google Scholar 

  11. Drigeard Desgarnier, M. C., & Rochette, P. J. (2018). Enhancement of UVB-induced DNA damage repair after a chronic low-dose UVB pre-stimulation. DNA Repair, 63, 56–62. https://doi.org/10.1016/j.dnarep.2018.01.008

    Article  CAS  PubMed  Google Scholar 

  12. Fisher, G. J., Datta, S. C., Talwar, H. S., Wang, Z. Q., Varani, J., Kang, S., & Voorhees, J. J. (1996). Molecular basis of sun-induced premature skin ageing and retinoid antagonism. Nature, 379(6563), 335–339. https://doi.org/10.1038/379335a0

    Article  CAS  PubMed  Google Scholar 

  13. Gravitz, L. (2018). Skin. Nature, 563(7732), S83. https://doi.org/10.1038/d41586-018-07428-4

    Article  CAS  PubMed  Google Scholar 

  14. Hay, E. D. (1995). An overview of epithelio-mesenchymal transformation. Acta Anatomica, 154(1), 8–20. https://doi.org/10.1159/000147748

    Article  CAS  PubMed  Google Scholar 

  15. Hemne, P. S., Kunghatkar, R. G., Dhoble, S. J., Moharil, S. V., & Singh, V. (2017). Phosphor for phototherapy: Review on psoriasis. Luminescence, 32(3), 260–270. https://doi.org/10.1002/bio.3266

    Article  CAS  PubMed  Google Scholar 

  16. Hodorogea, A., Calinescu, A., Antohe, M., Balaban, M., Nedelcu, R. I., Turcu, G., Ion, D. A., Badarau, I. A., Popescu, C. M., Popescu, R., Popp, C., Cioplea, M., Nichita, L., Hulea, I., & Brinzea, A. (2019). Epithelial-Mesenchymal transition in skin cancers: a review. Analytical Cellular Pathology, 2019, 3851576. https://doi.org/10.1155/2019/3851576

    Article  CAS  Google Scholar 

  17. Ikehata, H., Okuyama, R., Ogawa, E., Nakamura, S., Usami, A., Mori, T., Tanaka, K., Aiba, S., & Ono, T. (2010). Influences of p53 deficiency on the apoptotic response, DNA damage removal and mutagenesis in UVB-exposed mouse skin. Mutagenesis, 25(4), 397–405. https://doi.org/10.1093/mutage/geq019

    Article  CAS  PubMed  Google Scholar 

  18. Kalluri, R., & Weinberg, R. A. (2009). The basics of epithelial-mesenchymal transition. The Journal of Clinical Investigation, 119(6), 1420–1428. https://doi.org/10.1172/JCI39104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Katiyar, S. K., Mantena, S. K., & Meeran, S. M. (2011). Silymarin protects epidermal keratinocytes from ultraviolet radiation-induced apoptosis and DNA damage by nucleotide excision repair mechanism. PLoS ONE, 6(6), e21410. https://doi.org/10.1371/journal.pone.0021410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Krutmann, J., & Berneburg, M. (2021). Sun-damaged skin (photoaging): What is new? Der Hautarzt, 72(1), 2–5. https://doi.org/10.1007/s00105-020-04747-4

    Article  CAS  PubMed  Google Scholar 

  21. Kuhn, A., Wenzel, J., & Weyd, H. (2014). Photosensitivity, apoptosis, and cytokines in the pathogenesis of lupus erythematosus: A critical review. Clin Rev Alle Immunol, 47(2), 148–162. https://doi.org/10.1007/s12016-013-8403-x

    Article  CAS  Google Scholar 

  22. Kulms, D., Poppelmann, B., Yarosh, D., Luger, T. A., Krutmann, J., & Schwarz, T. (1999). Nuclear and cell membrane effects contribute independently to the induction of apoptosis in human cells exposed to UVB radiation. Proc Natl Acad Sci U S A, 96(14), 7974–7979. https://doi.org/10.1073/pnas.96.14.7974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kulms, D., Zeise, E., Poppelmann, B., & Schwarz, T. (2002). DNA damage, death receptor activation and reactive oxygen species contribute to ultraviolet radiation-induced apoptosis in an essential and independent way. Oncogene, 21(38), 5844–5851. https://doi.org/10.1038/sj.onc.1205743

    Article  CAS  PubMed  Google Scholar 

  24. Kyoo-Ri Kwon, M., Alam, B., Park, J.-H., Kim, T.-H., & Lee, S.-H. (2019). Attenuation of UVB-induced photo-aging by polyphenolic-rich Spatholobus Suberectus stem extract via modulation of MAPK/AP-1/MMPs signaling in human keratinocytes. Nutrients, 11(6), 1341. https://doi.org/10.3390/nu11061341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lee, J. H., Khor, T. O., Shu, L., Su, Z. Y., Fuentes, F., & Kong, A. N. (2013). Dietary phytochemicals and cancer prevention: Nrf2 signaling, epigenetics, and cell death mechanisms in blocking cancer initiation and progression. Pharmacol Therapeut, 137(2), 153–171. https://doi.org/10.1016/j.pharmthera.2012.09.008

    Article  CAS  Google Scholar 

  26. Li, H., Gao, A., Jiang, N., Liu, Q., Liang, B., Li, R., Zhang, E., Li, Z., & Zhu, H. (2016). Protective effect of curcumin against acute ultraviolet B irradiation-induced photo-damage. Photochemistry and Photobiology, 92(6), 808–815. https://doi.org/10.1111/php.12628

    Article  CAS  PubMed  Google Scholar 

  27. Li, X. Z., Zhou, C., Zhang, C., Xie, X. X., Zhou, Z. M., Zhou, M. J., Chen, L. H., & Ding, Z. H. (2019). MicroRNA-664 functions as an oncogene in cutaneous squamous cell 1 carcinomas (cSCC) via suppressing interferon regulatory factor 2. Journal of Dermatological Science, 94(3), 330–338. https://doi.org/10.1016/j.jdermsci.2019.05.004

    Article  CAS  PubMed  Google Scholar 

  28. Li, X., Zhang, C., Yuan, Y., Wang, Y., Lu, S., Zhou, Z., Zhen, P., & Zhou, M. (2021). Downregulation of ARMC8 promotes tumorigenesis through activating Wnt/beta-catenin pathway and EMT in cutaneous squamous cell carcinomas. Journal of Dermatological Science, 102(3), 184–192. https://doi.org/10.1016/j.jdermsci.2021.05.002

    Article  CAS  PubMed  Google Scholar 

  29. Liu, A., Yu, C., Qiu, C., Wu, Q., Huang, C., Li, X., She, X., Wan, K., Liu, L., Li, M., Wang, Z., Chen, Y., Hu, F., Song, D., Li, K., Zhao, C., Deng, H., Sun, X., Xu, F., … Wang, G. (2023). PRMT5 methylating SMAD4 activates TGF-β signaling and promotes colorectal cancer metastasis. Oncogene, 42(19), 1572–1584. https://doi.org/10.1038/s41388-023-02674-x

    Article  CAS  PubMed  Google Scholar 

  30. Liu, N., Yu, C., Shi, Y., Jiang, J., & Liu, Y. (2015). SMAD4 expression in breast ductal carcinoma correlates with prognosis. Oncology Letters, 10(3), 1709–1715. https://doi.org/10.3892/ol.2015.3442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lopes, D. M., & McMahon, S. B. (2016). Ultraviolet radiation on the skin: a painful experience? CNS Neurosci Therapeut, 22(2), 118–126. https://doi.org/10.1111/cns.12444

    Article  Google Scholar 

  32. Lucas, R. M., Norval, M., Neale, R. E., Young, A. R., de Gruijl, F. R., Takizawa, Y., & van der Leun, J. C. (2015). The consequences for human health of stratospheric ozone depletion in association with other environmental factors. Photochemical & Photobiological Sciences, 14(1), 53–87. https://doi.org/10.1039/c4pp90033b

    Article  CAS  Google Scholar 

  33. Marais, T. L. D., Kluz, T., Xu, D., Zhang, X., Gesumaria, L., Matsui, M. S., Costa, M., & Sun, H. (2017). Transcription factors and stress response gene alterations in human keratinocytes following solar simulated ultra violet radiation. Science and Reports, 7(1), 13622. https://doi.org/10.1038/s41598-017-13765-7

    Article  CAS  Google Scholar 

  34. Massague, J., Blain, S. W., & Lo, R. S. (2000). TGFbeta signaling in growth control, cancer, and heritable disorders. Cell, 103(2), 295–309. https://doi.org/10.1016/s0092-8674(00)00121-5

    Article  CAS  PubMed  Google Scholar 

  35. McCarthy, A. J., & Chetty, R. (2018). Smad4/DPC4. Journal of Clinical Pathology, 71(8), 661–664. https://doi.org/10.1136/jclinpath-2018-205095

    Article  PubMed  Google Scholar 

  36. Miyaki, M., Iijima, T., Konishi, M., Sakai, K., Ishii, A., Yasuno, M., Hishima, T., Koike, M., Shitara, N., Iwama, T., Utsunomiya, J., Kuroki, T., & Mori, T. (1999). Higher frequency of Smad4 gene mutation in human colorectal cancer with distant metastasis. Oncogene, 18(20), 3098–3103. https://doi.org/10.1038/sj.onc.1202642

    Article  CAS  PubMed  Google Scholar 

  37. Narayanan, D. L., Saladi, R. N., & Fox, J. L. (2010). Ultraviolet radiation and skin cancer. International Journal of Dermatology, 49(9), 978–986. https://doi.org/10.1111/j.1365-4632.2010.04474.x

    Article  PubMed  Google Scholar 

  38. Richa, & SinhaHäder, R. P. D. P. (2015). Physiological aspects of UV-excitation of DNA. Topics in Current Chemistry, 356, 203–248. https://doi.org/10.1007/128_2014_531

    Article  CAS  PubMed  Google Scholar 

  39. Roland, C. L., Starker, L. F., Kang, Y., Chatterjee, D., Estrella, J., Rashid, A., Katz, M. H., Aloia, T. A., Lee, J. E., Dasari, A., Yao, J. C., & Fleming, J. B. (2017). Loss of DPC4/SMAD4 expression in primary gastrointestinal neuroendocrine tumors is associated with cancer-related death after resection. Surgery, 161(3), 753–759. https://doi.org/10.1016/j.surg.2016.09.002

    Article  PubMed  Google Scholar 

  40. Schuch, A. P., Moreno, N. C., Schuch, N. J., Menck, C. F. M., & Garcia, C. C. M. (2017). Sunlight damage to cellular DNA: Focus on oxidatively generated lesions. Free Rad Biol Med, 107, 110–124. https://doi.org/10.1016/j.freeradbiomed.2017.01.029

    Article  CAS  PubMed  Google Scholar 

  41. Schwarz, T. (2005). Mechanisms of UV-induced immunosuppression. Keio Journal of Medicine, 54(4), 165–171. https://doi.org/10.2302/kjm.54.165

    Article  CAS  PubMed  Google Scholar 

  42. Sjerobabski Masnec, I., & Poduje, S. (2008). Photoaging. Collegium Antropologicum, 32(Suppl 2), 177–180.

    PubMed  Google Scholar 

  43. Soehnge, H., Ouhtit, A., & Ananthaswamy, O. N. (1997). Mechanisms of induction of skin cancer by UV radiation. Frontiers in Bioscience, 2, d538–d551. https://doi.org/10.2741/a211

    Article  CAS  PubMed  Google Scholar 

  44. Song, K., Lee, H. S., Jia, L., Chelakkot, C., Rajasekaran, N., & Shin, Y. K. (2022). SMAD4 controls cancer cell metabolism by regulating methylmalonic aciduria cobalamin deficiency (cbl) B Type. Molecular Cell, 45(6), 413–424. https://doi.org/10.14348/molcells.2022.0067

    Article  CAS  Google Scholar 

  45. Tachibana, I., Imoto, M., Adjei, P. N., Gores, G. J., Subramaniam, M., Spelsberg, T. C., & Urrutia, R. (1997). Overexpression of the TGFbeta-regulated zinc finger encoding gene, TIEG, induces apoptosis in pancreatic epithelial cells. The Journal of Clinical Investigation, 99(10), 2365–2374. https://doi.org/10.1172/JCI119418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ullah, I., Liao, Y., Wan, R., Tang, L., & Feng, J. (2018). Alternative Splicing of SMAD4 and Its Function in HaCaT Cells in Response to UVB Irradiation. Journal of Cancer, 9(17), 3177–3186. https://doi.org/10.7150/jca.24756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wan, R., Feng, J., & Tang, L. (2021). Consequences of mutations and abnormal expression of SMAD4 in tumors and T cells. Oncotarg Ther, 14, 2531–2540. https://doi.org/10.2147/OTT.S297855

    Article  Google Scholar 

  48. Xia, X., Wu, W., Huang, C., Cen, G., Jiang, T., Cao, J., Huang, K., & Qiu, Z. (2015). SMAD4 and its role in pancreatic cancer. Tum Biol, 36(1), 111–119. https://doi.org/10.1007/s13277-014-2883-z

    Article  CAS  Google Scholar 

  49. Yang, H., Li, G., Wu, J. J., Wang, L., Uhler, M., & Simeone, D. M. (2013). Protein kinase A modulates transforming growth factor-beta signaling through a direct interaction with Smad4 protein. Journal of Biological Chemistry, 288(12), 8737–8749. https://doi.org/10.1074/jbc.M113.455675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yoshiki, R., Nakamura, M., & Tokura, Y. (2012). The biological role of UVB-induced cutaneous immunosuppression. Journal of UOEH, 34(1), 77–83. https://doi.org/10.7888/juoeh.34.77

    Article  CAS  PubMed  Google Scholar 

  51. Yoshitomi, Y., Osada, H., Satake, H., Kojima, M., Saito-Takatsuji, H., Ikeda, T., Yoshitake, Y., Ishigaki, Y., Kubo, E., Sasaki, H., & Yonekura, H. (2019). Ultraviolet B-induced Otx2 expression in lens epithelial cells promotes epithelial–mesenchymal transition. Biol Open. https://doi.org/10.1242/bio.035691

    Article  PubMed  PubMed Central  Google Scholar 

  52. Zhang, C., Xie, X., Yuan, Y., Wang, Y., Zhou, M., Li, X., & Zhen, P. (2020). MiR-664 Protects Against UVB Radiation-Induced HaCaT Cell Damage via Downregulating ARMC8. Dose Response, 18(2), 1559325820929234. https://doi.org/10.1177/1559325820929234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhao, M., Mishra, L., & Deng, C. X. (2018). The role of TGF-beta/SMAD4 signaling in cancer. International Journal of Biological Sciences, 14(2), 111–123. https://doi.org/10.7150/ijbs.23230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (31971167 and 82273582), the Science and Technology Program of Traditional Chinese Medicine of Zhejiang Province(2024ZL1261), the Science and Technology Plan Projects of Liuzhou (2022CAC0229), the Self-Funded Scientific Research Project of Guangxi Health and Family Planning Commission (Z20211580) and College Students' Innovative Entrepreneurial Training Plan Program (202110594024).

Author information

Authors and Affiliations

Authors

Contributions

Meijuan Zhou: Conceptualization, Methodology, Writing-original draft. Xiangzhi Li and Yimeng Wang: Conceptualization, Methodology, Writing-original draft and Visualization. Xian Wang, Qingquan He and Cailian Wu: Conceptualization, Methodology, Writing-initial draft. Yi Shen, Yawen Yuan and Shuyi Mao: Methodology, Software, Investigation.

Corresponding author

Correspondence to Meijuan Zhou.

Ethics declarations

Conflicts of interest

The authors declare that there are no conflicts of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Wang, Y., Wang, X. et al. Downregulation of SMAD4 protects HaCaT cells against UVB-induced damage and oxidative stress through the activation of EMT. Photochem Photobiol Sci (2024). https://doi.org/10.1007/s43630-024-00574-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43630-024-00574-x

Keywords

Navigation