Skip to main content
Log in

miR-1246-overexpressing exosomes improve UVB-induced photoaging by activating autophagy via suppressing GSK3β

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Stem cell paracrine has shown potential application in skin wound repair and photoaging treatment. Our previous study demonstrated that miR-1246-overexpressing Exosomes (OE-EXs) isolated from adipose-derived stem cells (ADSCs) showed superior photo-protecting effects on UVB-induced photoaging than that of the vector, however, the underlying mechanism was unclear. The simultaneous bioinformatics analysis indicated that miR-1246 showed potential binding sites with GSK3β which acted as a negative regulator for autophagy. This study was aimed to explore whether OE-EXs ameliorate skin photoaging by activating autophagy via targeting GSK3β. The results demonstrated that OE-EXs significantly decreased GSK3β expression, enhanced autophagy flux and autophagy-related proteins like LC3II, while suppressed p62 expression. Meanwhile, OE-EXs markedly reversed the levels of intracellular ROS, MMP-1, procollagen type I and DNA damage in human skin fibroblasts caused by UVB irradiation, but the ameliorating effects were significantly inhibited when 3-Methyladenine (3-MA) was introduced to block the autophagy pathway. Further, OE-EXs could reverse UVB-induced wrinkles, epidermal hyperplasia, and collagen fibers reduction in Kunming mice, nevertheless, the therapeutical effects of OE-EXs were attenuated when it was combinative treated with 3-MA. In conclusion, OE-EXs could cure UVB induced skin photoaging by activating autophagy via targeting GSK3β.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Gromkowska-Kępka, K. J., Puścion-Jakubik, A., Markiewicz-Żukowska, R., & Socha, K. (2021). The impact of ultraviolet radiation on skin photoaging—Review of in vitro studies. Journal of Cosmetic Dermatology, 20, 3427–3431.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Laikova, K. V., Oberemok, V. V., Krasnodubets, A. M., Galchinsky, N. V., Useinov, R. Z., Novikov, I. A., Temirova, Z. Z., Gorlov, M. V., Shved, N. A., Kumeiko, V. V., Makalish, T. P., Bessalova, E. Y., Fomochkina, I. I., Esin, A. S., Volkov, M. E., & Kubyshkin, A. V. (2019). Advances in the understanding of skin cancer: Ultraviolet radiation, mutations, and antisense oligonucleotides as anticancer drugs. Molecules, 24, 1516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jo, H., Brito, S., Kwak, B. M., Park, S., Lee, M.-G., & Bin, B.-H. (2021). Applications of mesenchymal stem cells in skin regeneration and rejuvenation. International Journal of Molecular Sciences, 22, 2410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Al-Ghadban, S., & Bunnell, B. A. (2020). Adipose tissue-derived stem cells: Immunomodulatory effects and therapeutic potential. Physiology, 35, 125–133.

    Article  CAS  PubMed  Google Scholar 

  5. Krawczenko, A., & Klimczak, A. (2022). Adipose tissue-derived mesenchymal stem/stromal cells and their contribution to angiogenic processes in tissue regeneration. International Journal of Molecular Sciences, 23, 2425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Govindasamy, V., Rajendran, A., Lee, Z. X., Ooi, G. C., Then, K. Y., Then, K. L., Gayathri, M., Kumar Das, A., & Cheong, S. K. (2021). The potential role of mesenchymal stem cells in modulating antiageing process. Cell Biology International, 45, 1999–2016.

    Article  CAS  PubMed  Google Scholar 

  7. Kalluri, R., & LeBleu, V. S. (2020). The biology, function, and biomedical applications of exosomes. Science, 367, eaau6977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Forsberg, M. H., Kink, J. A., Hematti, P., & Capitini, C. M. (2020). Mesenchymal stromal cells and exosomes: progress and challenges. Frontiers in Cell and Developmental Biology, 8, 551810.

    Article  Google Scholar 

  9. Wu, P., Zhang, B., Shi, H., Qian, H., & Xu, W. (2018). MSC-exosome: A novel cell-free therapy for cutaneous regeneration. Cytotherapy, 20, 291–301.

    Article  PubMed  Google Scholar 

  10. Oh, M., Lee, J., Kim, Y., Rhee, W., & Park, J. (2018). Exosomes derived from human induced pluripotent stem cells ameliorate the aging of skin fibroblasts. International Journal of Molecular Sciences, 19, 1715.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Yan, T., Huang, L., Yan, Y., Zhong, Y., Xie, H., & Wang, X. (2023). MAPK/AP-1 signaling pathway is involved in the protection mechanism of bone marrow mesenchymal stem cells-derived exosomes against ultraviolet-induced photoaging in human dermal fibroblasts. Skin Pharmacology and Physiology, 36, 98–106.

    Article  CAS  PubMed  Google Scholar 

  12. Gao, W., Wang, X., Si, Y., Pang, J., Liu, H., Li, S., Ding, Q., & Wang, Y. (2021). Exosome derived from ADSCs attenuates ultraviolet B-mediated photoaging in human dermal fibroblasts. Photochemistry and Photobiology, 97, 795–804.

    Article  CAS  PubMed  Google Scholar 

  13. Gao, W., Yuan, L. M., Zhang, Y., Huang, F. Z., Gao, F., Li, J., Xu, F., Wang, H., & Wang, Y. S. (2023). miR-1246-overexpressing exosomes suppress UVB-induced photoaging via regulation of TGF-beta/Smad and attenuation of MAPK/AP-1 pathway. Photochemical and Photobiological Sciences, 22, 135–146.

    Article  CAS  PubMed  Google Scholar 

  14. Yang, F., Xiong, H., Duan, L., Li, Q., Li, X., & Zhou, Y. (2019). MiR-1246 promotes metastasis and invasion of A549 cells by targeting GSK-3β-mediated Wnt/β-catenin pathway. Cancer Research and Treatment, 51, 1420–1429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Xie, K., Liu, L., Chen, J., & Liu, F. (2019). Exosomes derived from human umbilical cord blood mesenchymal stem cells improve hepatic ischemia reperfusion injury via delivering miR-1246. Cell Cycle, 18, 3491–3501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Philip, C., & Sheelagh, F. (2001). The renaissance of gsk3. Nature reviews molecular cell biology, 2, 769–776.

    Article  Google Scholar 

  17. Mancinelli, R., Carpino, G., Petrungaro, S., Mammola, C. L., Tomaipitinca, L., Filippini, A., Facchiano, A., Ziparo, E., & Giampietri, C. (2017). Multifaceted roles of GSK-3 in cancer and autophagy-related diseases. Oxidative Medicine and Cellular Longevity, 2017, 1–14.

    Article  Google Scholar 

  18. Sun, J., Zhou, J., Zhou, J., Xu, W., Du, Y., Jia, Z., Shen, Y., Lin, X., Wang, X., Bao, Y., Rao, Z., Dong, S., Luo, Y., Cong, W., Jin, L., & Li, X. (2023). FGF4 promotes skin wound repair through p38 MAPK and GSK3β-mediated stabilization of slug. Journal of Investigative Dermatology, 143, 1073-1084.e1078.

    Article  CAS  PubMed  Google Scholar 

  19. Fang, Y., Chen, B., Liu, Z., Gong, A. Y., Gunning, W. T., Ge, Y., Malhotra, D., Gohara, A. F., Dworkin, L. D., & Gong, R. (2022). Age-related GSK3β overexpression drives podocyte senescence and glomerular aging. Journal of Clinical Investigation, 132, 1.

    Article  Google Scholar 

  20. Liu, T., Zong, S., Luo, P., Qu, Y., Wen, Y., Du, P., & Xiao, H. (2019). Enhancing autophagy by down-regulating GSK-3β alleviates cisplatin-induced ototoxicity in vivo and in vitro. Toxicology Letters, 313, 11–18.

    Article  CAS  PubMed  Google Scholar 

  21. Cao, W., Li, J., Yang, K., & Cao, D. (2021). An overview of autophagy: Mechanism, regulation and research progress. Bulletin du Cancer, 108, 304–322.

    Article  PubMed  Google Scholar 

  22. Madeo, F., Tavernarakis, N., & Kroemer, G. (2010). Can autophagy promote longevity? Nature Cell Biology, 12, 842–846.

    Article  CAS  PubMed  Google Scholar 

  23. Rajawat, Y. S., Hilioti, Z., & Bossis, I. (2009). Aging: Central role for autophagy and the lysosomal degradative system. Ageing Research Reviews, 8, 199–213.

    Article  CAS  PubMed  Google Scholar 

  24. Gu, Y., Han, J., Xue, F., Xiao, H., Chen, L., Zhao, Z., & Zhang, Y. (2022). 4,4′-Dimethoxychalcone protects the skin from AAPH-induced senescence and UVB-induced photoaging by activating autophagy. Food and Function, 13, 4114–4129.

    Article  CAS  PubMed  Google Scholar 

  25. Qin, D., Ren, R., Jia, C., Lu, Y., Yang, Q., Chen, L., Wu, X., Zhu, J., Guo, Y., Yang, P., Zhou, Y., Zhu, N., Bi, B., & Liu, T. (2018). Rapamycin protects skin fibroblasts from ultraviolet b-induced photoaging by suppressing the production of reactive oxygen species. Cellular Physiology and Biochemistry, 46, 1849–1860.

    Article  CAS  PubMed  Google Scholar 

  26. Zhao, Y., Lin, J., Li, J., Bwalya, C., Xu, Y., Niu, Y., Zhang, Y., Wu, J., Xu, Y., Chen, J., Ye, S., & Lin, L. (2022). RhFGF21 protects epidermal cells against UVB-induced apoptosis through activating AMPK-mediated autophagy. International Journal of Molecular Sciences, 23, 12466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gao, W., Zhang, Y., Yuan, L., Huang, F., & Wang, Y. S. (2023). Long non-coding RNA H19-overexpressing exosomes ameliorate UVB-induced photoaging by upregulating SIRT1Via sponging miR-138. Photochemistry and Photobiology, 99, 1456.

    Article  CAS  PubMed  Google Scholar 

  28. Hwang, E., Park, S.-Y., Sun, Z.-W., Shin, H.-S., Lee, D.-G., & Yi, T. H. (2013). The protective effects of fucosterol against skin damage in UVB-irradiated human dermal fibroblasts. Marine Biotechnology, 16, 361–370.

    Article  PubMed  Google Scholar 

  29. Liang, J.-X., Liao, X., Li, S.-H., Jiang, X., Li, Z.-H., Wu, Y.-D., Xiao, L.-L., Xie, G.-H., Song, J.-X., Liu, H.-W., & Cheng, C.-I. (2020). Antiaging properties of exosomes from adipose-derived mesenchymal stem cells in photoaged rat skin. BioMed Research International, 2020, 1–13.

    CAS  Google Scholar 

  30. Jin, J., Shi, Y., Gong, J., Zhao, L., Li, Y., He, Q., & Huang, H. (2019). Exosome secreted from adipose-derived stem cells attenuates diabetic nephropathy by promoting autophagy flux and inhibiting apoptosis in podocyte. Stem Cell Research and Therapy, 10, 95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rongfeng, S., Yinpeng, J., Weiwei, H., Weishuai, L., Chuanwu, C., Shilong, H., Suming, Z., Hongxin, Y., Xiaohu, Y., Jiahai, S., & Hui, Z. (2020). Exosomes derived from mmu_circ_0000250-modified ADSCs promote wound healing in diabetic mice by inducing miR-128-3p/SIRT1 mediated autophagy. American Journal of Physiology-Cell Physiology, 18, 848–856.

    Google Scholar 

  32. Wang, M., Charareh, P., Lei, X., & Zhong, J. L. (2019). Autophagy: Multiple mechanisms to protect skin from ultraviolet radiation-driven photoaging. Oxidative Medicine and Cellular Longevity, 2019, 1–14.

    CAS  Google Scholar 

  33. Jia, L., Yu-Guang, W., Shu-Yan, Y., Chuan-E, L., & Si-Meng, K. (2020). Protective effect of acacetin in human periodontal ligament cells via regulation of autophagy and inflammation. Die Pharmazie, 75, 436–439.

    Google Scholar 

  34. Mullenders, L. H. F. (2018). Solar UV damage to cellular DNA: From mechanisms to biological effects. Photochemical and Photobiological Sciences, 17, 1842–1852.

    Article  CAS  PubMed  Google Scholar 

  35. Gao, W., Zheng, S., Hwang, E., Yi, T.-H., & Wang, Y.-S. (2021). Effects of phenylethanol glycosides from orobanche cernua loefling on UVB-induced skin photodamage: A comparative study. Photochemical and Photobiological Sciences, 20, 599–614.

    Article  CAS  PubMed  Google Scholar 

  36. Xie, H., Zhou, L., Liu, F., Long, J., Yan, S., Xie, Y., Hu, X., & Li, J. (2021). Autophagy induction regulates aquaporin 3-mediated skin fibroblast ageing*. British Journal of Dermatology, 186, 318–333.

    Article  PubMed  Google Scholar 

  37. Wang, M., Lei, M., Chang, L., Xing, Y., Guo, Y., Pourzand, C., Bartsch, J. W., Chen, J., Luo, J., Widya Karisma, V., Nisar, M. F., Lei, X., & Zhong, J. L. (2021). Bach2 regulates autophagy to modulate UVA-induced photoaging in skin fibroblasts. Free Radical Biology and Medicine, 169, 304–316.

    Article  CAS  PubMed  Google Scholar 

  38. Wen, W., Chen, J., Ding, L., Luo, X., Zheng, X., Dai, Q., Gu, Q., Liu, C., Liang, M., Guo, X., Liu, P., & Li, M. (2018). Astragaloside exerts anti-photoaging effects in UVB-induced premature senescence of rat dermal fibroblasts through enhanced autophagy. Archives of biochemistry and biophysics, 657, 31–40.

    Article  CAS  PubMed  Google Scholar 

  39. Xiao-Ming, X., Chen, M., Shu-Jun, X., & Rong, L. (2021). Drug loading techniques for exosome-based drug delivery systems. Die Pharmazie, 76, 61–67.

    Google Scholar 

  40. Guo, C., Zhang, J., Wang, J., Su, L., Ning, X., Guo, Y., Han, J., & Ma, N. (2023). Vascular endothelial cell-derived exosomal miR-1246 facilitates posterior capsule opacification development by targeting GSK-3β in diabetes mellitus. Experimental Eye Research, 231, 109463.

    Article  CAS  PubMed  Google Scholar 

  41. Muralimanoharan, S., Kwak, Y. T., & Mendelson, C. R. (2018). Redox sensitive transcription factor Nrf2 enhances trophoblast differentiation via induction of miR-1246 and aromatase. Endocrinology, 159, 2022–2033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Xie, B., Li, L., Zhang, Z., Zhao, L., Cheng, J., Zhou, C., Cheng, J., Yan, J., Chen, J., Yi, J., Wang, B., Jin, S., & Wei, H. (2021). MicroRNA-1246 by targeting AXIN2 and GSK-3β overcomes drug resistance and induces apoptosis in chemo-resistant leukemia cells. Journal of Cancer, 12, 4196–4208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lin, J., Song, T., Li, C., & Mao, W. (2020). GSK-3β in DNA repair, apoptosis, and resistance of chemotherapy, radiotherapy of cancer. Biochimica et Biophysica Acta (BBA)—Molecular Cell Research, 1867, 118659.

    Article  CAS  PubMed  Google Scholar 

  44. Hwang, G. Y., & Choung, S.-Y. (2016). Anti-melanogenic effects of aster spathulifoliusextract in UVB-exposed C57BL/6J mice and B16F10 melanoma cells through the regulation of MAPK/ERK and AKT/GSK3β signalling. Journal of Pharmacy and Pharmacology, 68, 503–513.

    Article  CAS  PubMed  Google Scholar 

  45. Yang, Y., Wang, H., Wang, S., Xu, M. E. I., Liu, M. E. I., Liao, M., Frank, J. A., Adhikari, S., Bower, K. A., Shi, X., Ma, C., & Luo, J. I. A. (2012). GSK3β signaling is involved in ultraviolet B-induced activation of autophagy in epidermal cells. International Journal of Oncology, 41, 1782–1788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Azoulay-Alfaguter, I., Elya, R., Avrahami, L., Katz, A., & Eldar-Finkelman, H. (2014). Combined regulation of mTORC1 and lysosomal acidification by GSK-3 suppresses autophagy and contributes to cancer cell growth. Oncogene, 34, 4613–4623.

    Article  PubMed  Google Scholar 

  47. Liu, Q., Kong, Y., Guo, X., Liang, B., Xie, H., Hu, S., Han, M., Zhao, X., Feng, P., Lyu, Q., Dong, W., Liang, X., Wang, W., & Li, C. (2021). GSK-3β inhibitor TDZD-8 prevents reduction of aquaporin-1 expression via activating autophagy under renal ischemia reperfusion injury. The FASEB Journal, 35, 21809.

    Article  Google Scholar 

  48. Li, X.-Z., Jiang, H., Xu, L., Liu, Y.-Q., Tang, J.-W., Shi, J.-S., Yu, X.-J., Wang, X., Du, L., Lu, Q., Li, C.-L., Liu, Y.-W., & Yin, X.-X. (2021). Sarsasapogenin restores podocyte autophagy in diabetic nephropathy by targeting GSK3β signaling pathway. Biochemical Pharmacology, 192, 114675.

    Article  CAS  PubMed  Google Scholar 

  49. Yun, H., Jo, Y., Kim, J., Shin, Y., Kim, S., & Choi, T. (2020). Roles of autophagy in oxidative stress. International Journal of Molecular Sciences, 21, 3289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Li, Y., Ouyang, S., Tu, L., Wang, X., Yuan, W., Wang, G., Wu, Y., Duan, W., Yu, H., Fang, Z., Kurihara, H., Zhang, Y., & He, R. (2018). Caffeine protects skin from oxidative stress-induced senescence through the activation of autophagy. Theranostics, 8, 5713–5730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Choi, W., Kim, H., Park, S., Kim, D., Hong, Y., Kim, J., & Cho, J. (2022). Panax ginseng Syringaresinol derived from berry attenuates oxidative stress-induced skin aging via autophagy. Journal of Ginseng Research, 46, 536–542.

    Article  CAS  PubMed  Google Scholar 

  52. Poillet-Perez, L., Despouy, G., Delage-Mourroux, R., & Boyer-Guittaut, M. (2015). Interplay between ROS and autophagy in cancer cells, from tumor initiation to cancer therapy. Redox Biology, 4, 184–192.

    Article  CAS  PubMed  Google Scholar 

  53. Zhang, D., Tang, B., Xie, X., Xiao, Y., Yang, S., & Zhang, J. (2015). The interplay between DNA repair and autophagy in cancer therapy. Cancer Biology and Therapy, 16, 1005–1013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Song, X., Narzt, M., Nagelreiter, I., Hohensinner, P., Terlecki-Zaniewicz, L., Tschachler, E., Grillari, J., & Gruber, F. (2017). Autophagy deficient keratinocytes display increased DNA damage, senescence and aberrant lipid composition after oxidative stress in vitro and in vivo. Redox Biology, 11, 219–230.

    Article  CAS  PubMed  Google Scholar 

  55. Qiang, L., Zhao, B., Shah, P., Sample, A., Yang, S., & He, Y. Y. (2016). Autophagy positively regulates DNA damage recognition by nucleotide excision repair. Autophagy, 12, 357–368.

    Article  CAS  PubMed  Google Scholar 

  56. Sample, A., & He, Y. Y. (2017). Autophagy in UV damage response. Photochemistry and Photobiology, 93, 943–955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hao, D., Wen, X., Liu, L., Wang, L., Zhou, X., Li, Y., Zeng, X., He, G., & Jiang, X. (2019). Sanshool improves UVB-induced skin photodamage by targeting JAK2/STAT3-dependent autophagy. Cell Death and Disease, 10, 19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bai, J., Liu, T., Tu, B., Yuan, M., Shu, Z., Fan, M., Huo, S., Guo, Y., Wang, L., Wang, H., & Zhao, Y. (2023). Autophagy loss impedes cancer-associated fibroblast activation via downregulating proline biosynthesis. Autophagy, 19, 632–643.

    Article  CAS  PubMed  Google Scholar 

  59. Li, C., Cui, L., Zhuo, Y., Hu, J., Cui, N., & Zhang, S. (2018). Inhibiting autophagy promotes collagen degradation by regulating matrix metalloproteinases in pancreatic stellate cells. Life Sciences, 208, 276–283.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Natural Science Foundation of China (82103755), the Key Projects of Outstanding Young Talents Support Program in Universities of Anhui Province (YQZD2023061), the Natural Science Foundation of Anhui Province (2108085QH333), the Innovation Program for Returned Overseas Chinese Scholars of Anhui Province (2021LCX027), the college students’ innovation and entrepreneurship training program of Anhui province (S202210367125, S202310367002, S202310367123 and 202210367034), and the Open Project of Anhui Engineering Technology Research Center of Biochemical Pharmaceutical (2023SYKFZ03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-shuai Wang.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, W., Yuan, L., Zhang, Y. et al. miR-1246-overexpressing exosomes improve UVB-induced photoaging by activating autophagy via suppressing GSK3β. Photochem Photobiol Sci (2024). https://doi.org/10.1007/s43630-024-00567-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43630-024-00567-w

Keywords

Navigation