Skip to main content
Log in

Photocatalytic activity enhancement of two-step and one-pot synthesis of Pd/ZnO nanocomposites: an experimental and DFT study

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Pd/ZnO nanocomposites were successfully synthesized by means of one and two pot synthesis and applied in the photodegradation of Rh6G. The nanocomposites were characterized by XRD, SEM, TEM, FTIR and micro-Raman spectroscopies. It was found the presence of PdZn2, PdO and agglomerated particles in the support surface for the Palladium-based nanocomposites fabricated by one-pot route; the two-step method allowed the formation of spherical Pd nanoparticles, with homogeneous distribution in the nanocomposite matrix, with an average size of 2.16 nm. The results show higher photocatalytic efficiency for the samples fabricated under the two-step approach compared to the one-pot synthesis. Based on experimental results, density functional theory (DFT) calculations were carried out to understand the enhancement photocatalytic of Pd/ZnO nanocomposites. To achieve it, the ZnO (001) and (101) surfaces were built and decorated by different Pd coverages. The theoretical results indicated two different photocatalytic mechanisms. In ZnO (001) case, the electrons flowed from surface to Pd, generating the superoxide radical anion (⋅O2). Furthermore, the density of states of the ZnO (001) surface was modified by impurity Pd–d states at proximity to the conduction states, which may work as electron acceptors states. On the other hand, we found that the electrons flow from Pd to ZnO (101) surface, inducing the formation of ⋅OH and ⋅O2 for the degradation of Rh6G. The density of states of the ZnO (101) revealed a reduction in its bandgap, due to Pd–d states localized above valence states. Hence, our theoretical results suggest that the Pd–d states may facilitate the mobility of electrons and holes in (001) and (101) surfaces, respectively, reducing the rate of charge recombination.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. M. R. Mulay, N. Martsinovich. TiO2 Photocatalysts for Degradation of Micropollutants in Water. In: Leal Filho, W., Azul, A.M., Brandli, L., Lange Salvia, A., Wall, T. (eds) Clean Water and Sanitation. Encyclopedia of the UN Sustainable Development Goals. Springer, Cham. https://doi.org/10.1007/978-3-319-70061-8_194-1 (2021)

  2. V. G. Lade. Introduction of water remediation processes. In Handbook of Nanomaterials for Wastewater Treatment (pp. 741–777). Elsevier (2021)

  3. Zheng, A. L. T., Abdullah, C. A. C., Chung, E. L. T., & Andou, Y. (2023). Recent progress in visible light-doped ZnO photocatalyst for pollution control. International Journal of Environmental Science and Technology, 20, 5753–5772.

    Article  CAS  Google Scholar 

  4. Al-Nuaim, M. A., Alwasiti, A. A., & Shnain, Z. Y. (2023). The photocatalytic process in the treatment of polluted water. Chem. Papers, 77, 677–701.

    Article  CAS  Google Scholar 

  5. Koe, W. S., Lee, J. W., Chong, W. C., et al. (2020). An overview of photocatalytic degradation: Photocatalysts, mechanisms, and development of photocatalytic membrane. Environmental Science and Pollution Research, 27, 2522–2565.

    Article  CAS  PubMed  Google Scholar 

  6. Terna, A. D., Elemike, E. E., Mbonu, J. I., Osafile, O. E., & Ezeani, R. O. (2021). The future of semiconductors nanoparticles: Synthesis, properties and applications. MSEB, 272, 115363.

    Article  CAS  Google Scholar 

  7. Pal, J., Sasmal, A. K., Ganguly, M., & Pal, T. (2015). Surface plasmon effect of Cu and presence of n-p heterojunction in oxide nanocomposites for visible light photocatalysis. Journal of Physical Chemistry C, 119, 3780–3790.

    Article  CAS  Google Scholar 

  8. Sumra, A. A., Aadil, M., Ejaz, S. R., Anjum, S., Saleem, T., Zain, M., & Alsafari, I. A. (2022). Biological synthesis of nanostructured ZnO as a solar-light driven photocatalyst and antimicrobial agent. Ceramics International, 48, 14652–14661.

    Article  CAS  Google Scholar 

  9. Eshete, M., Li, X., Yang, L., Wang, X., Zhang, J., Xie, L., Deng, L., Zhang, G., & Jiang, J. (2023). Charge steering in heterojunction photocatalysis: general principles, design, construction, and challenges. Small Sci., 3, 2200041.

    Article  CAS  Google Scholar 

  10. Fujii, S., Matsuzawa, S., Nakamura, Y., Ohtaka, A., Teratani, T., Akamatsu, K., Tsuruoks, T., & Nawafune, H. (2010). Synthesis and characterization of polypoyrrole-palladium nanocomposite-coated latex particles and their used as catalyst for Suzuki coupling reaction in aqueous media. Langmuir, 26, 6230–6239.

    Article  CAS  PubMed  Google Scholar 

  11. Ohodnicki, P. R., Baltrus, J. P., & Brown, T. D. (2015). Pd/SiO2 and AuPd/SiO2 nanocomposite-based optical fiber sensors for H2 sensing applications. Sensors and Actuators, B: Chemical, 214, 159–168.

    Article  CAS  Google Scholar 

  12. Li, X., & Yang, H. (2014). Pd hybridizing ZnO/Kaolinite nanocomposites: Synthesis, microstructure, and enhanced photocatalytic property. Applied Clay Science, 100, 43–49.

    Article  CAS  Google Scholar 

  13. Song, S., Wu, K., Wu, H., Guo, J., & Zhang, L. (2020). Synthesis of Z-scheme multi-shelled ZnO/AgVO 3 spheres as photocatalysts for the degradation of ciprofloxacin and reduction of chromium (VI). Journal of Materials Science, 55, 4987–5007.

    Article  CAS  Google Scholar 

  14. Qi, K., Xing, X., Zada, A., Li, M., Wang, Q., Liu, S. Y., & Wang, G. (2020). Transition metal doped ZnO nanoparticles with enhanced photocatalytic and antibacterial performances: Experimental and DFT studies. Ceramics International, 46, 1494–1502.

    Article  CAS  Google Scholar 

  15. Harun, K., Mansor, N., Yaakob, M. K., Taib, M. F. M., Ahmad, Z. A., & Mohamad, A. A. (2016). On the verification of sol–gel-derived ZnO nanoparticle properties using first-principles calculation. Journal of Sol-Gel Science and Technology, 80, 56–67.

    Article  CAS  Google Scholar 

  16. Shenoy, S., Tarafder, K., & Sridharan, K. (2021). Bimetallic nanoparticles grafted ZnO hierarchical structures as efficient visible light driven photocatalyst: An experimental and theoretical study. Journal of Molecular Structure, 1236, 130355.

    Article  CAS  Google Scholar 

  17. Nam, Y., Lim, J. H., Ko, K. C., & Lee, J. Y. (2019). Photocatalytic activity of TiO2 nanoparticles: A theoretical aspect. J. Mater. Chem. A, 7, 13833–13859.

    Article  CAS  Google Scholar 

  18. Shenoy, S., & Tarafder, K. (2020). Enhanced photocatalytic efficiency of layered CdS/CdSe heterostructures: Insights from first principles electronic structure calculations. Journal of Physics: Condensed Matter, 32, 275501.

    CAS  PubMed  Google Scholar 

  19. Yuan-Hang, Q., Ya-Bo, J., Jiang, Y., Dong-Fang, N., Xin- Sheng, Z., Xing- Gui, Z., Niu, L., & Wei-Kang, Y. (2012). Controllable synthesis of carbon nanofiber supported Pd catalyst for formic acid electrooxidation. International Journal of Hydrogen Energy, 37, 7373–7377.

    Article  Google Scholar 

  20. Kherzianjoo, S., & Revansiddappa, H. D. (2013). Photocatalytic Degradation of Acid Yellow 36 using Zinc Oxide photocatalyst in aqueous media. Journal of Catalysis, 2013, 1–6.

    Google Scholar 

  21. Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., & Wentzcovitch, R. M. (2009). Quantum espresso: A modular and open-source software project for quantum simulations of materials. Journal of Physics: Condensed Matter, 21, 395502.

    PubMed  Google Scholar 

  22. Vanderbilt, D. (1990). Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Physical Review B, 41, 7892.

    Article  CAS  Google Scholar 

  23. Harun, K., Salleh, N. A., Deghfel, B., Yaakob, M. K., & Mohamad, A. A. (2020). DFT+ U calculations for electronic, structural, and optical properties of ZnO wurtzite structure: A review. Res. Phys., 16, 102829.

    Google Scholar 

  24. Cococcioni, M., & De Gironcoli, S. (2005). Linear response approach to the calculation of the effective interaction parameters in the LDA+ U method. Physical Review B, 71, 035105.

    Article  Google Scholar 

  25. Jacobo-Fernández, J. M., Corona-García, C. A., Ponce-Pérez, R., Borbón-Nuñez, H. A., Hoat, D. M., Reyes-Serrato, A., & Guerrero-Sánchez, J. (2023). Spin-polarized total-energy calculations on designing magnetic single-atom catalysts on the ZnO (0001̅) surface with Pt and Pd. ACS Appl. Nano Mater., 6, 16740–16748.

    Article  Google Scholar 

  26. Lee, W. J., & Kim, Y. S. (2011). Dimer-vacancy reconstructions of the GaN and ZnO (10 1¯ 1) surfaces: Density functional theory calculations. Physical Review B, 84, 115318.

    Article  Google Scholar 

  27. He, Q., Zhou, F., Zhan, S., Yang, Y., Liu, Y., Tian, Y., & Huang, N. (2017). Enhancement of photocatalytic and photoelectrocatalytic activity of Ag modified Mpg-C3N4 composites. Applied Surface Science, 391, 423–431.

    Article  CAS  Google Scholar 

  28. Zhang, W., Cho, H. Y., Zhang, Z., Yang, W., Kim, K. K., & Zhang, F. (2016). First-principles calculation the electronic structure and the optical properties of Mn-decorated g-C3N4 for photocatalytic applications. J. Kor. Phys. Soc., 69, 1445–1449.

    Article  CAS  Google Scholar 

  29. Methfessel, M. P. A. T., & Paxton, A. T. (1989). High-precision sampling for Brillouin-zone integration in metals. Physical Review B, 40, 3616.

    Article  CAS  Google Scholar 

  30. Monkhorst, H. J., & Pack, J. D. (1976). Special points for Brillouin-zone integrations. Physical Review B, 13, 5188.

    Article  Google Scholar 

  31. Tang, W., Sanville, E., & Henkelman, G. (2009). A grid-based Bader analysis algorithm without lattice bias. Journal of Physics: Condensed Matter, 21, 4204.

    Google Scholar 

  32. Sengupta, J., Sahoo, R. K., Bardhan, K. K., & Mukherjee, C. D. (2011). Influence of annealing temperature on the structural, topographical, and optical properties of sol–gel derived ZnO thin films. Materials Letters, 65, 2572–2574.

    Article  CAS  Google Scholar 

  33. Mamat, M. H., Che-Khan, M. I., Nik-Mohammad, N. N. H., Khusaimi, Z., Md-Sin, N. D., Shariffudin, S. S., Mohamed-Zahidi, M., & Rusop-Mahommod, A. (2012). Effect of annealing environments on the solution-grown, aligned Aluminum-doped Zinc Oxide Nanorod-array-based ultraviolet photoconductive sensor. Journal of Nanomaterials, 1, 1–15.

    Article  Google Scholar 

  34. Wang, P. H., & Pan, C. Y. (2001). Ultrafine palladium particles immobilized on polymer microspheres. Colloid and Polymer Science, 279, 171–177.

    Article  CAS  Google Scholar 

  35. Liu, K. H., Lin, C. C., & Chen, S. Y. (2005). Growth and physical characterization of polygon prismatic hollow Zn-ZnO crystals. Crystal Growth & Design, 5, 483–487.

    Article  CAS  Google Scholar 

  36. Amin, G., Asif, M. H., Zainelabdin, A., Zaman, S., Nur, O., & Willander, M. (2011). Influence of pH, precursor concentration, growth time, and temperature on the morphology of ZnO nanostructures grown by the hydrothermal method. Journal of Nanomaterials, 2011, 5–5.

    Article  Google Scholar 

  37. Rayerfrancis, A., Bhargav, P. B., Ahmed, N., Chandra, B., & Dhara, S. (2015). Effect of pH on the morphology of ZnO nanostructures and its influence on structural and optical properties. Phys. B Condes. Matter, 457, 96–102.

    Article  CAS  Google Scholar 

  38. Yamabi, S. H., & Imai, H. (2002). Growth conditions of wurtzite zinc oxide films in aqueous solutions. Journal of Materials Chemistry, 12, 3773–3778.

    Article  CAS  Google Scholar 

  39. Ji, X., Song, X., Li, J., Bai, Y., Yang, W., & Peng, X. (2007). Size control of gold nanocrystals in citrate reduction: The third role of citrate. Journal of the American Chemical Society, 129, 13939–13948.

    Article  CAS  PubMed  Google Scholar 

  40. Habibi, M. H., & Rahmati, M. H. (2014). Fabrication and characterization of ZnO@CdS core–shell nanostructure using acetate precursors: XRD, FESEM, DRS, FTIR studies and effects of cadmium ion concentration on band gap. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 133, 13–18.

    Article  CAS  PubMed  Google Scholar 

  41. Udayachandran Thampy, U. S., Rama Krishna, C., & Venkata Reddy, C. (2011). Spectral Investigations on Cu2+-Doped ZnO Nanopowders. Applied Magnetic Resonance, 41, 69–78.

    Article  Google Scholar 

  42. Golić, D. L., Branković, G., Nešić, M. P., Vojisavljević, K., Rečnik, A., Daneu, N., Bernik, S., Šćepanović, M., Poleti, D., & Branković, Z. (2011). Structural characterization of self-assembled ZnO nanoparticles obtained by the sol–gel method from Zn(CH3COO)2·2H2O. Nanotechnology, 22, 395603.

    Article  Google Scholar 

  43. Wen-Zhong, W., Yu-Jie, L., Hong-Long, S., & Gu-Ling, Z. (2014). Optical properties of plate-Shaped ZnO nanocrystals grown by a facile and environmentally friendly molten salt method. Chinese Physics Letters, 31, 097802.

    Article  Google Scholar 

  44. Kliche, G. (1989). Lattice vibrations of the cooperites PdO and PtS. Zeitschrift für Naturforschung A, 44, 169–172.

    Article  CAS  Google Scholar 

  45. McBride, J. R., Hass, K. C., & Weber, W. H. (1991). Resonance-Raman and lattice- dynamics studies of single-crystal PdO. Physical Review B, 44, 5016–5044.

    Article  CAS  Google Scholar 

  46. Paul, A., Luisier, M., & Klimeck, G. (2011). Influence of cross-section geometry and wire orientation on the phonon shifts in ultra-scaled Si nanowires. Journal of Applied Physics, 110, 094308.

    Article  Google Scholar 

  47. Sun, C. Q., Pan, L. K., Li, C. M., & Li, S. (2005). Size- induced acoustic hardening and optic softening of phonons in InP, CeO2, SnO2, CdS, Ag and Si nanostructures. Physical Review B, 69, 13401.

    Google Scholar 

  48. Sun, C. Q. (2004). Surface and Nanosolid core-level shift: Impact of atomic coordination-number imperfection. Physical Review B, 69, 045105.

    Article  Google Scholar 

  49. Yang, C. C., & Li, S. (2008). Size-dependent raman red shifts of semiconductor nanocrystals. The Journal of Physical Chemistry B, 112, 14193–14197.

    Article  CAS  PubMed  Google Scholar 

  50. Bardhan, R., Zarick, H. F., Schwartzberg, A., & Pint, C. L. (2013). Size-dependent phononic properties of PdO nanocrystals probed by nanoscale optical thermometry. Journal of Physical Chemistry C, 117, 21558–21568.

    Article  CAS  Google Scholar 

  51. Phan, T. L., Yu, S. C., Vincent, R., Bui, H. M., Thanh, T. D., Lam, V. D., & Lee, Y. P. (2010). Influence of Mn doping on structural, optical, and magnetic properties of Zn1-xMnxO nanorods. Journal of Applied Physics, 108, 044910.

    Article  Google Scholar 

  52. Warren, D. S., & James McQuillan, A. (2004). Influence of adsorbed water on phonon and UV-induced IR absorptions of TiO2 photocatalytic particle films. The Journal of Physical Chemistry B, 108, 19373–19379.

    Article  CAS  Google Scholar 

  53. Zhang, Y., Zhu, F., Zhang, J., & Xia, L. (2008). Converting layered Zinc acetate nanoblelts to one-dimensional structured ZnO nanoparticles aggregates and their photocatalytic activity. Nanoscale Research Letters, 3, 201–204.

    Article  PubMed Central  Google Scholar 

  54. Kamarulzaman, N., Kasim, M. F., & Rusdi, R. (2015). Band gap narrowing and widening of ZnO nanostructures and doped materials. Nanoscale Research Letters, 10, 1–12.

    Article  CAS  Google Scholar 

  55. Dükkancı, M., Gündüz, G., Yılmaz, S., & Yaman, Y. C. (2010). Characterization and catalytic activity of CuFeZSM-5 catalysts for oxidative degradation of Rhodamine 6G in aqueous solutions. Applied Catalysis B: Environmental, 95, 270–278.

    Article  Google Scholar 

  56. Fernandes, C. D., Ferrer, M. M., Raubach, C. W., Moreira, E. C., Gularte, L. T., Cava, S., & Moreira, M. L. (2020). An investigation of the photovoltaic parameters of ZnS grown on ZnO (101). New Journal of Chemistry, 44, 20600–20609.

    Article  CAS  Google Scholar 

  57. Ma, C., Jin, W., Duan, X., Ma, X., Han, H., Zhang, Z., & Wu, Y. (2019). From the absolute surface energy to the stabilization mechanism of high index polar surface in wurtzite structure: The case of ZnO. J. Alloys Compounds, 772, 482–488.

    Article  CAS  Google Scholar 

  58. Zhou, T., Hu, M., He, J., Xie, R., An, C., Li, C., & Luo, J. (2019). Enhanced catalytic performance of zinc oxide nanorods with crystal plane control. Cryst. Eng. Comm., 21, 5526–5532.

    Article  CAS  Google Scholar 

  59. Bai, X., Sun, B., Wang, X., Zhang, T., Hao, Q., Ni, B. J., & Li, H. (2020). Defective crystal plane-oriented induced lattice polarization for the photocatalytic enhancement of ZnO. Cryst. Eng. Comm., 22, 2709–2717.

    Article  CAS  Google Scholar 

  60. Harun, K., Yaakob, M. K., Taib, M. F. M., Sahraoui, B., Ahmad, Z. A., & Mohamad, A. A. (2017). Efficient diagnostics of the electronic and optical properties of defective ZnO nanoparticles synthesized using the sol–gel method: Experimental and theoretical studies. Mat. Res. Express, 4(2017), 085908.

    Article  Google Scholar 

  61. Yang, S., Lyu, L., Zhao, C., Liu, H., & Huang, X. (2020). Theoretical study on a potential oxygen reduction reaction electrocatalyst: Single Fe atoms supported on graphite carbonitride. Langmuir, 37(2020), 428–436.

    PubMed  Google Scholar 

  62. Liu, J. (2015). Origin of high photocatalytic efficiency in monolayer g-C3N4/CdS heterostructure: A hybrid DFT study. Journal of Physical Chemistry C, 119, 28417–28423.

    Article  CAS  Google Scholar 

  63. Jin, Y., Xi, J., Zhang, Z., Xiao, J., Xiao, F., Qian, L., & Wang, S. (2015). An ultra-low Pd loading nanocatalyst with efficient catalytic activity. Nanoscale, 7, 5510–5515.

    Article  CAS  PubMed  Google Scholar 

  64. Sun, W., Jha, J. K., Shepherd, N. D., & Du, J. (2018). Interface structures of ZnO/MoO3 and their effect on workfunction of ZnO surfaces from first principles calculations. Computational Materials Science, 141(2018), 162–169.

    Article  CAS  Google Scholar 

  65. Güy, N., Çakar, S., & Özacar, M. (2016). Comparison of palladium/zinc oxide photocatalysts prepared by different palladium doping methods for congo red degradation. Journal of Colloid and Interface Science, 466, 128–137.

    Article  PubMed  Google Scholar 

  66. Seddigi, Z. S., Ahmed, S. A., Bumajdad, A., Danish, E. Y., Shawwky, A. M., Gondal, M. A., & Soylak, M. (2015). The efficient photocatalytic degradation of methyl ter-butyl ether under Pd/ZnO and visible light irradiation. Photochemical & Photobiological Sciences, 91(2015), 265–271.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge to Laboratorio central IFUAP, for materials characterization, and the computer resources provided by Laboratorio Nacional de Supercómputo del Sureste de México (LNS) (Project 202302046C), a member of the CONAHCYT network of Nacional Laboratories. J.C.M thanks to CONAHCYT for the doctoral scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María de Lourdes Ruiz Peralta.

Ethics declarations

Conflict of interest

The authors declare that they do not have competing financial interests of personal relationships that could have appeared to influence the work reported in this paper.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 400 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Lourdes Ruiz Peralta, M., Moreno-Hernandez, J.C., Rocha-Díaz, C.E. et al. Photocatalytic activity enhancement of two-step and one-pot synthesis of Pd/ZnO nanocomposites: an experimental and DFT study. Photochem Photobiol Sci (2024). https://doi.org/10.1007/s43630-024-00562-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43630-024-00562-1

Keywords

Navigation