Skip to main content
Log in

Highly sensitive and specific detection of Ni2+ using a novel fluorometric probe in the DMSO-H2O system

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The rapid detection of Ni ions has important research and application value. This paper presents a novel specific turn-off fluorescence probe PCTMP-FS for detecting Ni2+ ions. The carbazole-based compound PCTMP is first synthesized via a two-step reaction. PCTMP-FS comprises PCTMP dispersed into a DMSO-H2O (fw = 30% v/v) mixed solvent. The probe demonstrates prominent selectivity and anti-interference abilities for detecting Ni2+ with a limit of detection (LOD) of 0.233 μM. The probe exhibits good applicability over a wide range of acidities. The detecting mechanism of the probe is due to the complex formed by PCTMP and Ni2+ (2:1), which destroys intramolecular charge transfer in the compound. The probe has good repeatability and demonstrates excellent stability and sensitivity for the detection of Ni2+ in real water samples.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All relevant data are within the manuscript and its supplement files.

References

  1. Gupta, N., Singhal, D., & Singh, A. K. (2016). Highly selective colorimetric and reversible fluorometric turn-off sensors based on the pyrimidine derivative: Mimicking logic gate operation and potential applications. New Journal of Chemistry, 40, 641–650.

    Article  CAS  Google Scholar 

  2. Yin, G., Yao, J., Hong, S., Zhang, Y., Xiao, Z., Yu, T., Li, H., & Yin, P. (2019). A dual-responsive colorimetric probe for the detection of Cu2+ and Ni2+ species in real water samples and human serum. The Analyst, 144, 6962–6967.

    Article  CAS  PubMed  Google Scholar 

  3. Han, Z., Yan, J., Tang, H. Q., He, Y., Zhu, Y., & Ge, Y. Q. (2017). Novel simple fluorescent sensor for nickel ions. Tetrahedron Letters, 58, 1254–1257.

    Article  CAS  Google Scholar 

  4. Kabzińska, K., Cisek-Woźniak, A., Czajeczny, D., Mruczyk, K., & Wójciak, R. W. (2021). The influence of Li+ ions on pepsin and trypsin activity in vitro. Journal of Trace Elements in Medicine and Biology, 66, 126763126763.

    Article  Google Scholar 

  5. Yu, T., Tian, X., Li, H., Li, W., Zhu, W., Zhou, H., Tian, Y., & Wu, J. (2016). A reversible and highly selective fluorescence “on-off-on” probe for detecting nickel ion in the mitochondria of living cells. Biosensors and Bioelectronics, 82, 93–98.

    Article  CAS  PubMed  Google Scholar 

  6. Ghaedi, M., Jaberi, S. Y. S., Hajati, S., Montazerozohori, M., Zarr, M., Asfaram, A., Kumawat, L. K., & Gupta, V. K. (2015). Preparation of iodide selective carbon paste electrode with modified carbon nanotubes by potentiometric method and effect of CuS-NPs on its response. Electroanalysis, 27, 1516–1522.

    Article  CAS  Google Scholar 

  7. Razmi, H., & Dehghanzade, M. (2019). Highly selective and sensitive electrochemical determination of Ni(II) in real samples based on ion-imprinted polymer technology. Electroanalysis, 32, 198–206.

    Article  Google Scholar 

  8. Azizi Khereshki, N., Mohammadi, A., Zavvar Mousavi, H., & Alizadeh, N. (2022). A novel thiosemicarbazide based chemosensor for colorimetric detection of Co2+ in commercial B12 vitamin and Co2+, Ni2+ simultaneously in aqueous media. Supramolecular Chemistry, 33, 513–526.

    Article  Google Scholar 

  9. Vengaian, K. M., Britto, C. D., Sivaraman, G., Sekar, K., & Singaravadivel, S. (2015). Phenothiazine based sensor for naked-eye detection and bioimaging of Hg(ii) and F− ions. RSC Advances, 5, 94903–94908.

    Article  CAS  Google Scholar 

  10. Christopher Leslee, D. B., Venkatachalam, U., Gunasekaran, J., Karuppannan, S., & Kuppannan, S. B. (2023). Synthesis of a quinoxaline–hydrazinobenzothiazole based probe—Single point detection of Cu2+, Co2+, Ni2+ and Hg2+ ions in real water samples. Organic & Biomolecular Chemistry, 21, 4130–4143.

    Article  CAS  Google Scholar 

  11. Aroua, L. M., Ali, R., Albadri, A. E. A. E., Messaoudi, S., Alminderej, F. M., & Saleh, S. M. (2023). A new, extremely sensitive, turn-off optical sensor utilizing Schiff base for fast detection of Cu(II). Biosensors, 13, 359359.

    Article  Google Scholar 

  12. Zhang, G., Huang, L., Xu, Y., Weng, S., & Ke, F. (2021). A 1,10-phenanthroline fluorescence probe for real-time visualization of Ni2+. Journal of the Iranian Chemical Society, 18, 2567–2573.

    Article  CAS  Google Scholar 

  13. Wang, Y., Zhou, F., Meng, Q., Zhang, S., Jia, H., Wang, C., Zhang R., & Zhang, Z. (2021). A novel fluorescence probe for the reversible detection of bisulfite and hydrogen peroxide pair in vitro and in vivo. Chemistry—An Asian Journal, 16, 3419–3426.

  14. Zhang, Y., Zhao, Y., Wu, Y., Zhao, B., Wang, L., Song, B., & Huang, C. (2021). Benzoindole-based bifunctional ratiometric turn-on sensor with an ICT effect for trapping of H+ and Al3+ in dual-channel cell imaging and samples. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 247, 119123119123.

    Article  Google Scholar 

  15. Zhang, Y., Zhao, Y., Song, B., & Huang, C. (2021). Spectroscopic behavior and intracellular application of a highly sensitive UV-fluorescence double ratio probe based on water-soluble indole for detection acid pH. Dyes and Pigments, 188, 109205109205.

    Article  Google Scholar 

  16. Kang, Y., & Wei, C. (2022). Crescent‐shaped carbazole derivatives as light‐up fluorescence probes for G‐quadruplex DNA and live cell imaging. Chemistry & Biodiversity, 19, e202101030e202101030.

  17. Yin, J., Ma, Y., Li, G., Peng, M., & Lin, W. (2020). A versatile small-molecule fluorescence scaffold: Carbazole derivatives for bioimaging. Coordination Chemistry Reviews, 412, 213257213257.

    Article  Google Scholar 

  18. Nayana, V., & Kandasubramanian, B. (2020). Polycarbazole and its derivatives: Progress, synthesis, and applications. Journal of Polymer Research, 27, 285285.

    Article  Google Scholar 

  19. Pan, J., Ma, J., Liu, H., Zhang, Y., & Lu, L. (2021). The preparation of a special fluorescent probe with an aggregation-induced emission effect for detecting hydrazine in water. New Journal of Chemistry, 45, 21151–21159.

    Article  CAS  Google Scholar 

  20. Ramírez, C. L., Mangione, M. I., Bertolotti, S. G., Arbeloa, E. M., & Parise, A. R. (2018). A photophysical and spectroelectrochemical study on N-phenyl-carbazoles and their oxidized species. Journal of Photochemistry and Photobiology A: Chemistry, 365, 199–207.

    Article  Google Scholar 

  21. Dumat, B., Bordeau, G., Faurel-Paul, E., Mahuteau-Betzer, F., Saettel, N., Bombled, M., Metgé, G., Charra, F., Fiorini-Debuisschert, C., & Teulade-Fichou, M. P. (2011). N-phenyl-carbazole-based two-photon fluorescent probes: Strong sequence dependence of the duplex vs quadruplex selectivity. Biochimie, 93, 1209–1218.

    Article  CAS  PubMed  Google Scholar 

  22. Qi, J., Hu, X., Dong, X., Lu, Y., Lu, H., Zhao, W., & Wu, W. (2019). Towards more accurate bioimaging of drug nanocarriers: Turning aggregation-caused quenching into a useful tool. Advanced Drug Delivery Reviews, 143, 206–225.

    Article  CAS  PubMed  Google Scholar 

  23. Ruan, Z., Fan, C., Wang, X., Shao, D., Yang, X., He, W., Xu, T., Lin, J., & Tian, Z. (2024). A novel thioketal containing fluorescent dye for mercury(II) detection via Hg2+-triggered ACQ to AIE transformation. Dyes and Pigments, 222, 111835.

    Article  CAS  Google Scholar 

  24. Zhang, Y., Zhao, Y., Zhou, A., Qu, Q., Zhang, X., Song, B., Liu, K., Xiong, R., & Huang, C. (2021). “Turn-on” ratiometric fluorescent probe: Naked-eye detection of acidic pH and citric acid (CA) by using fluorescence spectrum and its application in real food samples and zebrafish. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 261, 120014.

    Article  CAS  PubMed  Google Scholar 

  25. Zhang, Y., Zhao, Y., Song, B., Liu, K., Gu, J., Yue, Y., Xiong, R., & Huang, C. (2021). UV-fluorescence probe for detection Ni2+ with colorimetric/spectral dual-mode analysis method and its practical application. Bioorganic Chemistry, 114, 105103105103.

    Article  Google Scholar 

  26. Santhoshkumar, S., Velmurugan, K., Prabhu, J., Radhakrishnan, G., & Nandhakumar, R. (2016). A naphthalene derived Schiff base as a selective fluorescent probe for Fe2+. Inorganica Chimica Acta, 439, 1–7.

    Article  CAS  Google Scholar 

  27. Gu, Y.-Q., Shen, W.-Y., Mi, Y., Jing, Y.-F., Yuan, J.-M., Yu, P., Zhu, X.-M., & Hu, F.-L. (2019). Dual-response detection of Ni2+ and Cu2+ ions by a pyrazolopyrimidine-based fluorescent sensor and the application of this sensor in bioimaging. RSC Advances, 9, 35671–35676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Li, S., Yue, T., Sun, W., Zhang, C., He, J., Han, M., Zhang, H., Yu, H., & Li, W. (2022). Intense removal of Ni (II) chelated by EDTA from wastewater via Fe3+ replacement–chelating precipitation. Process Safety and Environmental Protection, 159, 1082–1091.

    Article  CAS  Google Scholar 

  29. Kumar, A., Chae, P. S., & Kumar, S. (2020). A dual-responsive anthrapyridone-triazole-based probe for selective detection of Ni2+ and Cu2+: A mimetic system for molecular logic gates based on color change. Dyes and Pigments, 174, 108092108092.

    Article  Google Scholar 

  30. Irfan, A., Al-Sehemi, A. G., & Kalam, A. (2013). Structural, electronic and charge transfer studies of dianthra[2,3-b:2′,3′-f]thieno[3,2-b]thiophene and its analogues: Quantum chemical investigations. Journal of Molecular Structure, 1049, 198–204.

    Article  CAS  Google Scholar 

  31. Huong, V. T. T., Nguyen, H. T., Tai, T. B., & Nguyen, M. T. (2013). π-Conjugated molecules containing naphtho[2,3-b]thiophene and their derivatives: Theoretical design for organic semiconductors. The Journal of Physical Chemistry C, 117, 10175–10184.

    Article  CAS  Google Scholar 

  32. Jang, H. J., Jo, T. G., & Kim, C. (2017). A single colorimetric sensor for multiple targets: The sequential detection of Co2+and cyanide and the selective detection of Cu2+in aqueous solution. RSC Advances, 7, 17650–17659.

    Article  CAS  Google Scholar 

  33. Song, Y., Tao, J., Wang, Y., Cai, Z., Fang, X., Wang, S., & Xu, H. (2021). A novel dual-responsive fluorescent probe for the detection of copper(II) and nickel(II) based on BODIPY derivatives. Inorganica Chimica Acta, 516, 120099120099.

    Article  Google Scholar 

  34. Fegade, U., Marek, J., Patil, R., Attarde, S., & Kuwar, A. (2014). A selective fluorescent receptor for the determination of nickel (II) in semi-aqueous media. Journal of Luminescence, 146, 234–238.

    Article  CAS  Google Scholar 

  35. Na, L.-P., Dou, L., Yan, Y.-J., Li, R.-Y., & Dong, W.-K. (2022). A new reversible aldehyde-appended salamo-like fluorogenic probe for cascade sensing of Ni2+ and HPO42− ions in aqueous medium. Journal of Photochemistry and Photobiology A: Chemistry, 432, 114061114061.

    Article  Google Scholar 

  36. Weerasinghe, A. J., Oyeamalu, A. N., Abebe, F. A., Venter, A. R., & Sinn, E. (2016). Rhodamine based turn-on sensors for Ni2+ and Cr3+ in organic media: Detecting CN via the metal displacement approach. Journal of Fluorescence, 26, 891–898.

    Article  CAS  PubMed  Google Scholar 

  37. Kumar, A., Virender, B., Mohan, K., Modi, M. A. U., & Din, and S. Kumar,. (2022). A highly selective ratiometric and colorimetric detection of Ni2+ and Cu2+ ions using Schiff base ligand. Journal of Molecular Structure, 1268, 133609133609.

    Article  Google Scholar 

  38. Wang, K., Zhao, C., Guo, S., Lu, Y., Shen, Y., & Wang, C. (2019). A coumarin-based near-infrared fluorescent probe with a large stokes shift for the sequential recognition of Ni2+ and CN: Performance research and quantum calculation. Journal of Photochemistry and Photobiology A: Chemistry, 382, 111943111943.

    Article  Google Scholar 

  39. Xie, P., Zhu, Y., Huang, X., Gao, G., Wei, F., Guo, F., Jiang, S., & Wang, C. (2019). A novel probe based on rhodamine 101 spirolactam and 2-(2′-hydroxy-5′-methylphenyl)benzothiazole moieties for three-in-one detection of paramagnetic Cu2+, Co2+ and Ni2+. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 222, 117171.

    Article  CAS  PubMed  Google Scholar 

  40. Kumar, V., Singh, D., Kumar, P., Chaudhary, G., Singh, A. P., & Gupta, R. (2022). Turn-on fluorescent detection of nickel and zinc ions by two related chemosensors containing naphthalimide ring(s). Journal of Molecular Structure, 1261, 132901132901.

    Article  Google Scholar 

  41. Pannipara, M., Al-Sehemi, A. G., Irfan, A., Assiri, M., Kalam, A., & Al-Ammari, Y. S. (2018). AIE active multianalyte fluorescent probe for the detection of Cu2+, Ni2+ and Hg2+ ions. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 201, 54–60.

    Article  CAS  PubMed  Google Scholar 

  42. Velmurugan, K., Prabhu, J., Raman, A., Duraipandy, N., Kiran, M. S., Easwaramoorthi, S., Tang, L., & Nandhakumar, R. (2018). Dual functional fluorescent chemosensor for discriminative detection of Ni2+ and Al3+ ions and its imaging in living cells. ACS Sustainable Chemistry & Engineering, 6, 16532–16543.

    Article  CAS  Google Scholar 

  43. Lin, X., Zheng, Y., Jiang, L., Chen, H., & Wang, Q. (2018). Study of specific interaction between bis(p-phenylene)-34-crown-10-based substituted macrocycle and Ni2+. Journal of Fluorescence, 28, 725–728.

    Article  CAS  PubMed  Google Scholar 

  44. Banerjee, A., Sahana, A., Guha, S., Lohar, S., Hauli, I., Mukhopadhyay, S. K., Sanmartín Matalobos, J., & Das, D. (2012). Nickel(II)-induced excimer formation of a naphthalene-based fluorescent probe for living cell imaging. Inorganic Chemistry, 51, 5699–5704.

    Article  CAS  PubMed  Google Scholar 

  45. Manna, A. K., Mondal, J., Rout, K., & Patra, G. K. (2018). A benzohydrazide based two-in-one Ni2+/Cu2+ fluorescent colorimetric chemosensor and its applications in real sample analysis and molecular logic gate. Sensors and Actuators B: Chemical, 275, 350–358.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Natural Science Foundation of Shanghai (No.15ZR1428500) for financial support.

Author information

Authors and Affiliations

Authors

Contributions

LW and JM provided the initial idea for this work; JM, as supervisor, provided support; LW contributed to the theoretical calculation and analysis of test data; JM and LW contributed to the paper writing.

Corresponding author

Correspondence to Jie Ma.

Ethics declarations

Interest statement

All authors declare no conflict of interest in the manuscript.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 23096 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Wang, L. & Ma, J. Highly sensitive and specific detection of Ni2+ using a novel fluorometric probe in the DMSO-H2O system. Photochem Photobiol Sci 23, 527–537 (2024). https://doi.org/10.1007/s43630-024-00537-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-024-00537-2

Keywords

Navigation