Skip to main content

Advertisement

Log in

Kinetic effects in singlet oxygen mediated oxidations by immobilized photosensitizers on silica

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Singlet oxygen (1O2) mediated photo-oxidations are important reactions involved in numerous processes in chemical and biological sciences. While most of the current research works have aimed at improving the efficiencies of these transformations either by increasing 1O2 quantum yields or by enhancing its lifetime, we establish herein that immobilization of a molecular photosensitizer onto silica surfaces affords significant, substrate dependant, enhancement in the reactivity of 1O2. Probing a classical model reaction (oxidation of Anthracene-9, 10-dipropionic acid, ADPA or dimethylanthracene, DMA) with various spectrofluorimetric techniques, it is here proposed that an interaction between polar substrates and the silica surface is responsible for the observed phenomenon. This discovery could have a direct impact on the design of future photosensitized 1O2 processes in various applications ranging from organic photochemistry to photobiology.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Fig. 6
Fig. 7
Scheme 2

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the paper and its Supplementary Information files. Should any raw data files be needed in another format they are available from the corresponding author upon reasonable request.

References

  1. DeRosa, M. (2002). Photosensitized singlet oxygen and its applications. Coordination Chemistry Reviews, 233–234, 351–371. https://doi.org/10.1016/S0010-8545(02)00034-6

    Article  Google Scholar 

  2. Foote, C. S., & Wexler, S. (1964). Singlet oxygen. A probable intermediate in photosensitized autoxidations. Journal of the American Chemical Society, 86, 3880–3881. https://doi.org/10.1021/ja01072a061

    Article  CAS  Google Scholar 

  3. Di Mascio, P., Martinez, G. R., Miyamoto, S., Ronsein, G. E., Medeiros, M. H. G., & Cadet, J. (2019). Singlet molecular oxygen reactions with nucleic acids, lipids, and proteins. Chemical Reviews, 119, 2043–2086. https://doi.org/10.1021/acs.chemrev.8b00554

    Article  CAS  PubMed  Google Scholar 

  4. Monro, S., Colón, K. L., Yin, H., Roque, J., Konda, P., Gujar, S., Thummel, R. P., Lilge, L., Cameron, C. G., & McFarland, S. A. (2019). Transition metal complexes and photodynamic therapy from a tumor-centered approach: Challenges, opportunities, and highlights from the development of TLD1433. Chemical Reviews, 119, 797–828. https://doi.org/10.1021/acs.chemrev.8b00211

    Article  CAS  PubMed  Google Scholar 

  5. Ogilby, P. R. (2010). Singlet oxygen: There is indeed something new under the sun. Chemical Society Reviews, 39, 3181. https://doi.org/10.1039/b926014p

    Article  CAS  PubMed  Google Scholar 

  6. Bogoeva, V., Siksjø, M., Sæterbø, K. G., Melø, T. B., Bjørkøy, A., Lindgren, M., & Gederaas, O. A. (2016). Ruthenium porphyrin-induced photodamage in bladder cancer cells. Photodiagnosis and Photodynamic Therapy, 14, 9–17. https://doi.org/10.1016/j.pdpdt.2016.01.012

    Article  CAS  PubMed  Google Scholar 

  7. Griffiths, J., Chu, K.-Y., & Hawkins, C. (1976). Photosensitised oxidation of 1-naphthols. Journal of the Chemical Society, Chemical Communications, 676, 1. https://doi.org/10.1039/c39760000676

    Article  Google Scholar 

  8. Takizawa, S., Aboshi, R., & Murata, S. (2011). Photooxidation of 1,5-dihydroxynaphthalene with iridium complexes as singlet oxygen sensitizers. Photochemical & Photobiological Sciences, 10, 895. https://doi.org/10.1039/c0pp00265h

    Article  CAS  Google Scholar 

  9. Ohloff, G. (1975). Singlet oxygen: A reagent in organic synthesis. In A. Bruylants, L. Ghosez, & H. G. Viehe (Eds.), Organic synthesis (pp. 481–502). Butterworth-Heinemann.

    Chapter  Google Scholar 

  10. Ravelli, D., Protti, S., Neri, P., Fagnoni, M., & Albini, A. (2011). Photochemical technologies assessed: The case of rose oxide. Green Chemistry, 13, 1876–1884. https://doi.org/10.1039/c0gc00507j

    Article  CAS  Google Scholar 

  11. Terra, J. C. S., Desgranges, A., Monnereau, C., Sanchez, E. H., De Toro, J. A., Amara, Z., & Moores, A. (2020). Photocatalysis meets magnetism: Designing magnetically recoverable supports for visible-light photocatalysis. ACS Applied Materials & Interfaces, 12, 24895–24904. https://doi.org/10.1021/acsami.0c06126

    Article  CAS  Google Scholar 

  12. Covello, P. S. (2008). Making artemisinin. Phytochemistry, 69, 2881–2885. https://doi.org/10.1016/j.phytochem.2008.10.001

    Article  CAS  PubMed  Google Scholar 

  13. Paddon, C. J., Westfall, P. J., Pitera, D. J., Benjamin, K., Fisher, K., McPhee, D., Leavell, M. D., Tai, A., Main, A., Eng, D., Polichuk, D. R., Teoh, K. H., Reed, D. W., Treynor, T., Lenihan, J., Jiang, H., Fleck, M., Bajad, S., Dang, G., … Newman, J. D. (2013). High-level semi-synthetic production of the potent antimalarial artemisinin. Nature, 496, 528–532. https://doi.org/10.1038/nature12051

    Article  CAS  PubMed  Google Scholar 

  14. Lévesque, F., & Seeberger, P. H. (2012). Continuous-flow synthesis of the anti-malaria drug artemisinin. Angewandte Chemie International Edition, 51, 1706–1709. https://doi.org/10.1002/anie.201107446

    Article  CAS  PubMed  Google Scholar 

  15. Amara, Z., Bellamy, J. F. B., Horvath, R., Miller, S. J., Beeby, A., Burgard, A., Rossen, K., Poliakoff, M., & George, M. W. (2015). Applying green chemistry to the photochemical route to artemisinin. Nature Chem, 7, 489–495. https://doi.org/10.1038/nchem.2261

    Article  CAS  Google Scholar 

  16. Kopetzki, D., Lévesque, F., & Seeberger, P. H. (2013). A continuous-flow process for the synthesis of artemisinin. Chemistry—A European Journal, 19, 5450–5456. https://doi.org/10.1002/chem.201204558

    Article  CAS  PubMed  Google Scholar 

  17. Montagnon, T., Tofi, M., & Vassilikogiannakis, G. (2008). Using singlet oxygen to synthesize polyoxygenated natural products from furans. Accounts of Chemical Research, 41, 1001–1011. https://doi.org/10.1021/ar800023v

    Article  CAS  PubMed  Google Scholar 

  18. Ghogare, A. A., & Greer, A. (2016). Using singlet oxygen to synthesize natural products and drugs. Chemical Reviews, 116, 9994–10034. https://doi.org/10.1021/acs.chemrev.5b00726

    Article  CAS  PubMed  Google Scholar 

  19. Richard, J.-A. (2009). Singlet oxygen. Synlett, 2009, 1187–1188. https://doi.org/10.1055/s-0028-1088111

    Article  CAS  Google Scholar 

  20. Al-Nu’airat, J., Oluwoye, I., Zeinali, N., Altarawneh, M., & Dlugogorski, B. Z. (2021). Review of chemical reactivity of singlet oxygen with organic fuels and contaminants. Chemical Record, 21, 315–342. https://doi.org/10.1002/tcr.202000143

    Article  CAS  PubMed  Google Scholar 

  21. Pibiri, I., Buscemi, S., Palumbo Piccionello, A., & Pace, A. (2018). Photochemically produced singlet oxygen: Applications and perspectives. ChemPhotoChem, 2, 535–547. https://doi.org/10.1002/cptc.201800076

    Article  CAS  Google Scholar 

  22. Schmidt, R. (2006). Photosensitized generation of singlet oxygen. Photochemistry and Photobiology, 82, 1161–1177. https://doi.org/10.1562/2006-03-03-lR-833

    Article  CAS  PubMed  Google Scholar 

  23. Mehraban, N., & Freeman, H. S. (2015). Developments in PDT sensitizers for increased selectivity and singlet oxygen production. Materials, 8, 4421–4456. https://doi.org/10.3390/ma8074421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sánchez-Arroyo, A. J., Palao, E., Agarrabeitia, A. R., Ortiz, M. J., & García-Fresnadillo, D. (2016). Towards improved halogenated BODIPY photosensitizers: Clues on structural designs and heavy atom substitution patterns. Physical Chemistry Chemical Physics: PCCP, 19, 69–72. https://doi.org/10.1039/C6CP06448E

    Article  CAS  PubMed  Google Scholar 

  25. Gorman, A., Killoran, J., O’Shea, C., Kenna, T., Gallagher, W. M., & O’Shea, D. F. (2004). In vitro demonstration of the heavy-atom effect for photodynamic therapy. Journal of the American Chemical Society, 126, 10619–10631. https://doi.org/10.1021/ja047649e

    Article  CAS  PubMed  Google Scholar 

  26. Mettra, B., Liao, Y. Y., Gallavardin, T., Armagnat, C., Pitrat, D., Baldeck, P., Bahers, T. L., Monnereau, C., & Andraud, C. (2018). A combined theoretical and experimental investigation on the influence of the bromine substitution pattern on the photophysics of conjugated organic chromophores. Physical Chemistry Chemical Physics: PCCP, 20, 3768–3783. https://doi.org/10.1039/C7CP06535C

    Article  CAS  PubMed  Google Scholar 

  27. Ashen-Garry, D., & Selke, M. (2014). Singlet oxygen generation by cyclometalated complexes and applications. Photochemistry and Photobiology, 90, 257–274. https://doi.org/10.1111/php.12211

    Article  CAS  PubMed  Google Scholar 

  28. Arnbjerg, J., Paterson, M. J., Nielsen, C. B., Jørgensen, M., Christiansen, O., & Ogilby, P. R. (2007). One- and two-photon photosensitized singlet oxygen production: Characterization of aromatic ketones as sensitizer standards. Journal of Physical Chemistry A, 111, 5756–5767. https://doi.org/10.1021/jp071197l

    Article  CAS  PubMed  Google Scholar 

  29. Westberg, M., Bregnhøj, M., Etzerodt, M., & Ogilby, P. R. (2017). No photon wasted: An efficient and selective singlet oxygen photosensitizing protein. The Journal of Physical Chemistry B, 121, 9366–9371. https://doi.org/10.1021/acs.jpcb.7b07831

    Article  CAS  PubMed  Google Scholar 

  30. Oliveros, E., Suardi-Murasecco, P., Aminian-Saghafi, T., Braun, A. M., & Hansen, H.-J. (1991). 1H-phenalen-1-one: Photophysical properties and singlet-oxygen production. Helvetica Chimica Acta, 74, 79–90. https://doi.org/10.1002/hlca.19910740110

    Article  CAS  Google Scholar 

  31. Galán, L. A., Castán, J. M. A., Dalinot, C., Marqués, P. S., Blanchard, P., Maury, O., Cabanetos, C., Bahers, T. L., & Monnereau, C. (2020). Theoretical and experimental investigation on the intersystem crossing kinetics in benzothioxanthene imide luminophores, and their dependence on substituent effects. Physical Chemistry Chemical Physics: PCCP, 22, 12373–12381. https://doi.org/10.1039/D0CP01072C

    Article  PubMed  Google Scholar 

  32. Zhang, X., Wang, Z., Hou, Y., Yan, Y., Zhao, J., & Dick, B. (2021). Recent development of heavy-atom-free triplet photosensitizers: Molecular structure design, photophysics and application. J Mater Chem C, 9, 11944–11973. https://doi.org/10.1039/D1TC02535J

    Article  CAS  Google Scholar 

  33. Yan, Y., Sukhanov, A. A., Bousquet, M. H. E., Guan, Q., Zhao, J., Voronkova, V. K., Escudero, D., Barbon, A., Xing, Y., Gurzadyan, G. G., & Jacquemin, D. (2021). Does twisted π-conjugation framework always induce efficient intersystem crossing? A case study with benzo[b]- and [a]phenanthrene-fused BODIPY derivatives and identification of a dark state. The Journal of Physical Chemistry B, 125, 6280–6295. https://doi.org/10.1021/acs.jpcb.1c03189

    Article  CAS  PubMed  Google Scholar 

  34. Zhao, J., Chen, K., Hou, Y., Che, Y., Liu, L., & Jia, D. (2018). Recent progress in heavy atom-free organic compounds showing unexpected intersystem crossing (ISC) ability. Organic & Biomolecular Chemistry, 16, 3692–3701. https://doi.org/10.1039/C8OB00421H

    Article  CAS  Google Scholar 

  35. Galán, L. A., Andrés Castán, J. M., Dalinot, C., Marqués, P. S., Galiana, J., Blanchard, P., Andraud, C., Dumont, E., Maury, O., Cabanetos, C., Monnereau, C., & Le Bahers, T. (2021). Exploring the concept of dimerization-induced intersystem crossing: At the origins of spin-orbit coupling selection rules. The Journal of Physical Chemistry B, 125, 8572–8580. https://doi.org/10.1021/acs.jpcb.1c05082

    Article  CAS  PubMed  Google Scholar 

  36. Bregnhøj, M., Westberg, M., Minaev, B. F., & Ogilby, P. R. (2017). Singlet oxygen photophysics in liquid solvents: Converging on a unified picture. Accounts of Chemical Research, 50, 1920–1927. https://doi.org/10.1021/acs.accounts.7b00169

    Article  CAS  PubMed  Google Scholar 

  37. Ogilby, P. R., & Foote, C. S. (1982). Chemistry of singlet oxygen. 36. Singlet molecular oxygen (1Δg) luminescence in solution following pulsed laser excitation. Solvent deuterium isotope effects on the lifetime of singlet oxygen. Journal of the American Chemical Society, 104, 2069–2070. https://doi.org/10.1021/ja00371a067

    Article  CAS  Google Scholar 

  38. Bourne, R. A., Han, X., Poliakoff, M., & George, M. W. (2009). Cleaner continuous photo-oxidation using singlet oxygen in supercritical carbon dioxide. Angewandte Chemie, 121, 5426–5429. https://doi.org/10.1002/ange.200901731

    Article  Google Scholar 

  39. Mendoza, C., Désert, A., Chateau, D., Monnereau, C., Khrouz, L., Lerouge, F., Andraud, C., Monbaliu, J.-C.M., Parola, S., & Heinrichs, B. (2020). Au nanobipyramids@mSiO2 core–shell nanoparticles for plasmon-enhanced singlet oxygen photooxygenations in segmented flow microreactors. Nanoscale Advances, 2, 5280–5287. https://doi.org/10.1039/D0NA00533A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gellé, A., Price, G. D., Voisard, F., Brodusch, N., Gauvin, R., Amara, Z., & Moores, A. (2021). Enhancing singlet oxygen photocatalysis with plasmonic nanoparticles. ACS Applied Materials & Interfaces, 13, 35606–35616. https://doi.org/10.1021/acsami.1c05892

    Article  CAS  Google Scholar 

  41. Macia, N., Kabanov, V., & Heyne, B. (2020). Rationalizing the plasmonic contributions to the enhancement of singlet oxygen production. Journal of Physical Chemistry C, 124, 3768–3777. https://doi.org/10.1021/acs.jpcc.9b10724

    Article  CAS  Google Scholar 

  42. Wilkinson, F., Helman, W. P., & Ross, A. B. (1995). Rate constants for the decay and reactions of the lowest electronically excited singlet state of molecular oxygen in solution. An expanded and revised compilation. Journal of Physical and Chemical Reference Data, 24, 663–677. https://doi.org/10.1063/1.555965

    Article  CAS  Google Scholar 

  43. Kitajima, N., Umehara, Y., Son, A., Kondo, T., & Tanabe, K. (2018). Confinement of singlet oxygen generated from ruthenium complex-based oxygen sensor in the pores of mesoporous silica nanoparticles. Bioconjugate Chem, 29, 4168–4175. https://doi.org/10.1021/acs.bioconjchem.8b00811

    Article  CAS  Google Scholar 

  44. Ramamurthy, V. (2000). Controlling photochemical reactions via confinement: Zeolites. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 1, 145–166. https://doi.org/10.1016/S1389-5567(00)00010-1

    Article  CAS  Google Scholar 

  45. Natarajan, A., Kaanumalle, L. S., Jockusch, S., Gibb, C. L. D., Gibb, B. C., Turro, N. J., & Ramamurthy, V. (2007). Controlling photoreactions with restricted spaces and weak intermolecular forces: Exquisite selectivity during oxidation of olefins by singlet oxygen. Journal of the American Chemical Society, 129, 4132–4133. https://doi.org/10.1021/ja070086x

    Article  CAS  PubMed  Google Scholar 

  46. Naim, K., Nair, S. T., Yadav, P., Shanavas, A., & Neelakandan, P. P. (2018). Supramolecular confinement within chitosan nanocomposites enhances singlet oxygen generation. ChemPlusChem, 83, 418–422. https://doi.org/10.1002/cplu.201800041

    Article  CAS  PubMed  Google Scholar 

  47. Kirby, A. J. (1996). Enzyme mechanisms, models, and mimics. Angewandte Chemie International Edition in English, 35, 706–724. https://doi.org/10.1002/anie.199607061

    Article  Google Scholar 

  48. Cacciapaglia, R., Di Stefano, S., & Mandolini, L. (2004). Effective molarities in supramolecular catalysis of two-substrate reactions. Accounts of Chemical Research, 37, 113–122. https://doi.org/10.1021/ar020076v

    Article  CAS  PubMed  Google Scholar 

  49. Friend, C. M., & Xu, B. (2017). Heterogeneous catalysis: A central science for a sustainable future. Accounts of Chemical Research, 50, 517–521. https://doi.org/10.1021/acs.accounts.6b00510

    Article  CAS  PubMed  Google Scholar 

  50. Heveling, J. (2012). Heterogeneous catalytic chemistry by example of industrial applications. Journal of Chemical Education, 89, 1530–1536. https://doi.org/10.1021/ed200816g

    Article  CAS  Google Scholar 

  51. Chorkendorff, I., & Niemantsverdriet, J. W. (2017). Concepts of modern catalysis and kinetics. Wiley.

    Google Scholar 

  52. Yang, Y., Zeng, Z., Almatrafi, E., Huang, D., Zhang, C., Xiong, W., Cheng, M., Zhou, C., Wang, W., Song, B., Tang, X., Zeng, G., Xiao, R., & Li, Z. (2022). Core-shell structured nanoparticles for photodynamic therapy-based cancer treatment and related imaging. Coordination Chemistry Reviews, 458, 214427. https://doi.org/10.1016/j.ccr.2022.214427

    Article  CAS  Google Scholar 

  53. Ding, B., Shao, S., Yu, C., Teng, B., Wang, M., Cheng, Z., Wong, K.-L., Ma, P., & Lin, J. (2018). Large-pore mesoporous-silica-coated upconversion nanoparticles as multifunctional immunoadjuvants with ultrahigh photosensitizer and antigen loading efficiency for improved cancer photodynamic immunotherapy. Advanced Materials, 30, 1802479. https://doi.org/10.1002/adma.201802479

    Article  CAS  Google Scholar 

  54. Maldonado-Carmona, N., Ouk, T.-S., & Leroy-Lhez, S. (2022). Latest trends on photodynamic disinfection of gram-negative bacteria: Photosensitizer’s structure and delivery systems. Photochemical & Photobiological Sciences, 21, 113–145. https://doi.org/10.1007/s43630-021-00128-5

    Article  CAS  Google Scholar 

  55. Noreen, S., Maqbool, A., Maqbool, I., Shafique, A., Khan, M. M., Junejo, Y., Ahmed, B., Anwar, M., Majeed, A., Abbas, M., Naveed, M., & Madni, A. (2022). Multifunctional mesoporous silica-based nanocomposites: Synthesis and biomedical applications. Materials Chemistry and Physics, 285, 126132. https://doi.org/10.1016/j.matchemphys.2022.126132

    Article  CAS  Google Scholar 

  56. Cheng, C., Tan, X., Lu, D., Wang, L., Sen, T., Lei, J., El-Toni, A. M., Zhang, J., Zhang, F., & Zhao, D. (2015). Carbon-dot-sensitized, nitrogen-doped TiO2 in mesoporous silica for water decontamination through nonhydrophobic enrichment-degradation mode. Chemistry—A European Journal, 21, 17944–17950. https://doi.org/10.1002/chem.201502301

    Article  CAS  PubMed  Google Scholar 

  57. García-Fresnadillo, D. (2018). Singlet oxygen photosensitizing materials for point-of-use water disinfection with solar reactors. ChemPhotoChem, 2, 512–534. https://doi.org/10.1002/cptc.201800062

    Article  CAS  Google Scholar 

  58. Chen, X.-F., & Ng, D. K. P. (2021). β-Cyclodextrin-conjugated phthalocyanines as water-soluble and recyclable sensitisers for photocatalytic applications. Chemical Communications, 57, 3567–3570. https://doi.org/10.1039/D1CC00713K

    Article  CAS  PubMed  Google Scholar 

  59. Ronzani, F., Costarramone, N., Blanc, S., Benabbou, A. K., Bechec, M. L., Pigot, T., Oelgemöller, M., & Lacombe, S. (2013). Visible-light photosensitized oxidation of α-terpinene using novel silica-supported sensitizers: Photooxygenation vs. photodehydrogenation. Journal of Catalysis, 303, 164–174. https://doi.org/10.1016/j.jcat.2013.04.001

    Article  CAS  Google Scholar 

  60. Body, N., Lefebvre, C., Eloy, P., Haynes, T., Hermans, S., & Riant, O. (2023). Impact of silica nanoparticles architectures on the photosensitization of O2 by immobilized Rose Bengal. Journal of Photochemistry and Photobiology A: Chemistry, 440, 114648. https://doi.org/10.1016/j.jphotochem.2023.114648

    Article  CAS  Google Scholar 

  61. Mendoza, C., Emmanuel, N., Páez, C. A., Dreesen, L., Monbaliu, J.-C.M., & Heinrichs, B. (2018). Improving continuous flow singlet oxygen photooxygenation reactions with functionalized mesoporous silica nanoparticles. ChemPhotoChem, 2, 890–897. https://doi.org/10.1002/cptc.201800148

    Article  CAS  Google Scholar 

  62. Xu, J., Pelluau, T., Monnereau, C., Guari, Y., Bonneviot, L., Rodríguez-Pizarro, M., & Albela, B. (2023). Incorporation of methylene blue into mesoporous silica nanoparticles for singlet oxygen generation. New Journal of Chemistry, 47, 1861–1871. https://doi.org/10.1039/D2NJ04835C

    Article  CAS  Google Scholar 

  63. Soria-Castro, S. M., Lebeau, B., Cormier, M., Neunlist, S., Daou, T. J., & Goddard, J.-P. (2020). Organic/inorganic heterogeneous silica-based photoredox catalyst for aza-henry reactions. European Journal of Organic Chemistry, 2020, 1572–1578. https://doi.org/10.1002/ejoc.201901382

    Article  CAS  Google Scholar 

  64. Blanchard, V., Asbai, Z., Cottet, K., Boissonnat, G., Port, M., & Amara, Z. (2020). Continuous flow photo-oxidations using supported photocatalysts on silica. Organic Process Research & Development, 24, 822–826. https://doi.org/10.1021/acs.oprd.9b00420

    Article  CAS  Google Scholar 

  65. Tambosco, B., Segura, K., Seyrig, C., Cabrera, D., Port, M., Ferroud, C., & Amara, Z. (2018). Outer-sphere effects in visible-light photochemical oxidations with immobilized and recyclable ruthenium bipyridyl salts. ACS Catalysis, 8, 4383–4389. https://doi.org/10.1021/acscatal.8b00890

    Article  CAS  Google Scholar 

  66. Lancel, M., Gomez, C., Port, M., & Amara, Z. (2021). Performances of homogeneous and heterogenized methylene blue on silica under red light in batch and continuous flow photochemical reactors. Frontiers in Chemical Engineering. https://doi.org/10.3389/fceng.2021.752364

    Article  Google Scholar 

  67. Thomassen, L. C. J., Aerts, A., Rabolli, V., Lison, D., Gonzalez, L., Kirsch-Volders, M., Napierska, D., Hoet, P. H., Kirschhock, C. E. A., & Martens, J. A. (2010). Synthesis and characterization of stable monodisperse silica nanoparticle sols for in vitro cytotoxicity testing. Langmuir, 26, 328–335. https://doi.org/10.1021/la902050k

    Article  CAS  PubMed  Google Scholar 

  68. Galland, M., Le Bahers, T., Banyasz, A., Lascoux, N., Duperray, A., Grichine, A., Tripier, R., Guyot, Y., Maynadier, M., Nguyen, C., Gary-Bobo, M., Andraud, C., Monnereau, C., & Maury, O. (2019). A “multi-heavy-atom” approach toward biphotonic photosensitizers with improved singlet-oxygen generation properties. Chemistry—A European Journal, 25, 9026–9034. https://doi.org/10.1002/chem.201901047

    Article  CAS  PubMed  Google Scholar 

  69. Bregnhøj, M., Westberg, M., Jensen, F., & Ogilby, P. R. (2016). Solvent-dependent singlet oxygen lifetimes: Temperature effects implicate tunneling and charge-transfer interactions. Physical Chemistry Chemical Physics: PCCP, 18, 22946–22961. https://doi.org/10.1039/C6CP01635A

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The French Ministry of Higher Education, Research and Innovation and Doctoral School “Sciences des Métiers de l’Ingénieur” (ED 432) are gratefully acknowledged for a PhD scholarship attributed to M.L. Z.A. is grateful to the French National Research Agency (ANR-21-CE07-0030 and ANR-21-CE29-0028) for funding.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through the contributions of all authors and all authors have read and agreed to the final version of the manuscript.

Corresponding authors

Correspondence to Cyrille Monnereau or Zacharias Amara.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 653 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lancel, M., Lindgren, M., Monnereau, C. et al. Kinetic effects in singlet oxygen mediated oxidations by immobilized photosensitizers on silica. Photochem Photobiol Sci 23, 79–92 (2024). https://doi.org/10.1007/s43630-023-00502-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-023-00502-5

Navigation