Skip to main content

Advertisement

Log in

Artificial night illumination disrupts sleep, and attenuates mood and learning in diurnal animals: evidence from behavior and gene expression studies in zebra finches

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

This study investigated the effects of an illuminated night on sleep, mood, and cognitive performance in non-seasonal diurnal zebra finches that were exposed for 6 weeks to an ecologically relevant dimly lit night (12L:12dLAN; 150 lx: 5 lx) with controls on the dark night (12L:12D; 150 lx: < 0.01 lx). Food and water were provided ad libitum. Under dLAN (dim light at night), birds showed disrupted nocturnal (frequent awakenings) and overall decreased sleep duration. They also exhibited a compromised novel object exploration, a marker of the bird’s mood state, and committed more errors, took significantly longer duration to learn with low retrieval performance of the learned task when tested for a color-discrimination (learning) task under the dLAN. Further, compared to controls, there was reduced mRNA expression level of genes involved in the neurogenesis, neural plasticity (bdnf, dcx and egr1) and motivation (th, drd2, taar1 and htr2c; dopamine synthesis and signaling genes) in the brain (hippocampus (HP), nidopallium caudolaterale (NCL), and midbrain) of birds under dLAN. These results show concurrent negative behavioral and molecular neural effects of the dimly illuminated nights, and provide insights into the possible impact on sleep and mental health in diurnal species inhabiting an increasingly urbanized ecosystem.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets will be available from the corresponding author upon a reasonable request.

References

  1. Aschoff, J. (1981). Thermal conductance in mammals and birds: Its dependence on body size and crcadian phase. Comparative Biochemistry and Physiology Part A, 69(4), 611–619. https://doi.org/10.1016/0300-9629(81)90145-6

    Article  Google Scholar 

  2. Kumar, V., & Sharma, A. (2018). Common features of circadian timekeeping in diverse organisms. Current Opinion in Physiology, 5, 58–67. https://doi.org/10.1016/j.cophys.2018.07.004

    Article  Google Scholar 

  3. Kumar, V., Kumar, B. S., & Singh, B. P. (1992). Photostimulation of blackheaded bunting: Subjective interpretation of day and night depends upon both photophase contrast and light intensity. Physiology and Behavior, 51(6), 1213–1217. https://doi.org/10.1016/0031-9384(92)90311-O

    Article  CAS  PubMed  Google Scholar 

  4. Singh, J., Rani, S., & Kumar, V. (2012). Functional similarity in relation to the external environment between circadian behavioral and melatonin rhythms in the subtropical Indian weaver bird. Hormones and Behavior, 61(4), 527–534. https://doi.org/10.1016/j.yhbeh.2012.01.015

    Article  CAS  PubMed  Google Scholar 

  5. Raap, T., Pinxten, R., & Eens, M. (2015). Light pollution disrupts sleep in free-living animals. Scientific Reports, 5(1), 13557. https://doi.org/10.1038/srep13557

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bedrosian, T. A., & Nelson, R. J. (2017). Timing of light exposure affects mood and brain circuits. Translational Psychiatry, 7(1), e1017–e1017. https://doi.org/10.1038/tp.2016.262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Aulsebrook, A. E., Lesku, J. A., Mulder, R. A., Goymann, W., Vyssotski, A. L., & Jones, T. M. (2020). Streetlights disrupt night-time sleep in urban black swans. Frontiers in Ecology and Evolution, 8, 131. https://doi.org/10.3389/fevo.2020.00131

    Article  Google Scholar 

  8. Falchi, F., Cinzano, P., Duriscoe, D., Kyba, C. C., Elvidge, C. D., Baugh, K., Portnov, B. A., Rybnikova, N. A., & Furgoni, R. (2016). The new world atlas of artificial night sky brightness. Science Advances, 2(6), e1600377. https://doi.org/10.1126/sciadv.1600377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dominoni, D. M., & Partecke, J. (2015). Does light pollution alter daylength? A test using light loggers on free-ranging European blackbirds (Turdus merula). Philosophical Transactions of the Royal Society B, 370(1667), 20140118. https://doi.org/10.1098/rstb.2014.0118

    Article  Google Scholar 

  10. Lewy, A. J., Wehr, T. A., Goodwin, F. K., Newsome, D. A., & Markey, S. P. (1980). Light suppresses melatonin secretion in humans. Science, 210(4475), 1267–1269. https://doi.org/10.1126/science.7434030

    Article  CAS  PubMed  Google Scholar 

  11. Beier, P. (2006). Effects of artificial night lighting on terrestrial mammals. Ecological Consequences of Artificial Night Lighting. https://doi.org/10.1603/0046-225X(2008)37[1371:ECOANL]2.0.CO;2

    Article  Google Scholar 

  12. Dominoni, D. M., & Nelson, R. J. (2018). Artificial light at night as an environmental pollutant: An integrative approach across taxa, biological functions, and scientific disciplines. Journal of Experimental zoology Part A, 329(8–9), 387. https://doi.org/10.1002/jez.2241

    Article  Google Scholar 

  13. Fleury, G., Masís-Vargas, A., & Kalsbeek, A. (2020). Metabolic implications of exposure to light at night: Lessons from animal and human studies. Obesity, 28, S18–S28. https://doi.org/10.1002/oby.22807

    Article  PubMed  Google Scholar 

  14. Rumanova, V. S., Okuliarova, M., & Zeman, M. (2020). Differential effects of constant light and dim light at night on the circadian control of metabolism and behavior. International Journal of Molecular Sciences, 21(15), 5478. https://doi.org/10.3390/ijms21155478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Navara, K. J., & Nelson, R. J. (2007). The dark side of light at night: Physiological, epidemiological, and ecological consequences. Journal of Pineal Research, 43(3), 215–224. https://doi.org/10.1111/j.1600-079X.2007.00473.x

    Article  CAS  PubMed  Google Scholar 

  16. Fonken, L. K., Finy, M. S., Walton, J. C., Weil, Z. M., Workman, J. L., Ross, J., & Nelson, R. J. (2009). Influence of light at night on murine anxiety-and depressive-like responses. Behavioural Brain Research, 205(2), 349–354. https://doi.org/10.1016/j.bbr.2009.07.001

    Article  PubMed  Google Scholar 

  17. Fujioka, A., Fujioka, T., Tsuruta, R., Izumi, T., Kasaoka, S., & Maekawa, T. (2011). Effects of a constant light environment on hippocampal neurogenesis and memory in mice. Neuroscience Letters, 488(1), 41–44. https://doi.org/10.1016/j.neulet.2010.11.001

    Article  CAS  PubMed  Google Scholar 

  18. Bedrosian, T. A., Fonken, L. K., Walton, J. C., Haim, A., & Nelson, R. J. (2011). Dim light at night provokes depression-like behaviors and reduces CA1 dendritic spine density in female hamsters. Psychoneuroendocrinology, 36(7), 1062–1069. https://doi.org/10.1016/j.psyneuen.2011.01.004

    Article  PubMed  Google Scholar 

  19. Fonken, L. K., Kitsmiller, E., Smale, L., & Nelson, R. J. (2012). Dim nighttime light impairs cognition and provokes depressive-like responses in a diurnal rodent. Journal of Biological Rhythms, 27(4), 319–327. https://doi.org/10.1177/0748730412448324

    Article  PubMed  Google Scholar 

  20. Fonken, L. K., & Nelson, R. J. (2013). Dim light at night increases depressive-like responses in male C3H/HeNHsd mice. Behavioural Brain Research, 243, 74–78. https://doi.org/10.1016/j.bbr.2012.12.046

    Article  PubMed  Google Scholar 

  21. Liu, Q., Wang, Z., Cao, J., Dong, Y., & Chen, Y. (2022). Dim blue light at night induces spatial memory impairment in mice by hippocampal neuroinflammation and oxidative stress. Antioxidants, 11(7), 1218. https://doi.org/10.3390/antiox11071218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Stenvers, D. J., van Dorp, R., Foppen, E., Mendoza, J., Opperhuizen, A. L., Fliers, E., Bisschop, P. H., Meijer, J. H., Kalsbeek, A., & Deboer, T. (2016). Dim light at night disturbs the daily sleep-wake cycle in the rat. Scientific Reports, 6(1), 1–12. https://doi.org/10.1038/srep35662

    Article  CAS  Google Scholar 

  23. Fonken, L. K., & Nelson, R. J. (2014). The effects of light at night on circadian clocks and metabolism. Endocrine Reviews, 35(4), 648–670. https://doi.org/10.1210/er.2013-1051

    Article  CAS  PubMed  Google Scholar 

  24. Bedrosian, T. A., Fonken, L. K., & Nelson, R. J. (2016). Endocrine effects of circadian disruption. Annual Review of Physiology, 78, 109–131. https://doi.org/10.1146/annurev-physiol-021115-105102

    Article  CAS  PubMed  Google Scholar 

  25. Steinmeyer, C., Schielzeth, H., Mueller, J. C., & Kempenaers, B. (2010). Variation in sleep behaviour in free-living blue tits, Cyanistes caeruleus: Effects of sex, age and environment. Animal Behaviour, 80(5), 853–864. https://doi.org/10.1016/j.anbehav.2010.08.005

    Article  Google Scholar 

  26. Renthlei, Z., Borah, B. K., & Trivedi, A. K. (2021). Urban environment alter the timing of progression of testicular recrudescence in tree sparrow (Passer montanus). Environmental Science and Pollution Research, 28, 31097–31107.

    Article  CAS  PubMed  Google Scholar 

  27. de Jong, M., Jeninga, L., Ouyang, J. Q., van Oers, K., Spoelstra, K., & Visser, M. E. (2016). Dose-dependent responses of avian daily rhythms to artificial light at night. Physiology and Behavior, 155, 172–179. https://doi.org/10.1016/j.physbeh.2015.12.012

    Article  CAS  PubMed  Google Scholar 

  28. Batra, T., Malik, I., & Kumar, V. (2019). Illuminated night alters behaviour and negatively affects physiology and metabolism in diurnal zebra finches. Environmental Pollution, 254, 112916. https://doi.org/10.1016/j.envpol.2019.07.084

    Article  CAS  PubMed  Google Scholar 

  29. Prabhat, A., Jha, N. A., Taufique, S. T., & Kumar, V. (2019). Dissociation of circadian activity and singing behavior from gene expression rhythms in the hypothalamus, song control nuclei and cerebellum in diurnal zebra finches. Chronobiology International, 36(9), 1268–1284. https://doi.org/10.1080/07420528.2019.1637887

    Article  CAS  PubMed  Google Scholar 

  30. Batra, T., Malik, I., Prabhat, A., Bhardwaj, S. K., & Kumar, V. (2020). Sleep in unnatural times: Illuminated night negatively affects sleep and associated hypothalamic gene expressions in diurnal zebra finches. Proceedings of the Royal Society B, 287(1928), 20192952. https://doi.org/10.1098/rspb.2019.2952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Prabhat, A., Malik, I., Jha, N. A., Bhardwaj, S. K., & Kumar, V. (2020). Developmental effects of constant light on circadian behaviour and gene expressions in zebra finches: Insights into mechanisms of metabolic adaptation to aperiodic environment in diurnal animals. Journal of Photochemistry and Photobiology B, 211, 1195. https://doi.org/10.1016/j.jphotobiol.2020.111995

    Article  CAS  Google Scholar 

  32. Prabhat, A., Kumar, M., Kumar, A., Kumar, V., & Bhardwaj, S. K. (2021). Effects of night illumination on behavior, body mass and learning in male Zebra finches. Birds, 2(4), 381–394. https://doi.org/10.3390/birds2040028

    Article  Google Scholar 

  33. Taufique, S. T., Prabhat, A., & Kumar, V. (2018). Illuminated night alters hippocampal gene expressions and induces depressive-like responses in diurnal corvids. European Journal of Neuroscience, 48(9), 3005–3018. https://doi.org/10.1111/ejn.14157

    Article  PubMed  Google Scholar 

  34. Taufique, S. T., Prabhat, A., & Kumar, V. (2019). Light at night affects hippocampal and nidopallial cytoarchitecture: Implication for impairment of brain function in diurnal corvids. Journal of Experimental Zoology Part A, 331(2), 149–156. https://doi.org/10.1002/jez.2238

    Article  Google Scholar 

  35. Nadel, L. (1991). The hippocampus and space revisited. Hippocampus, 1(3), 221–229.

    Article  CAS  PubMed  Google Scholar 

  36. Crusio, W. E. (2001). Genetic dissection of mouse exploratory behaviour. Behavioural Brain Research, 125(1–2), 127–132. https://doi.org/10.1016/S0166-4328(01)00280-7

    Article  CAS  PubMed  Google Scholar 

  37. Squire, L. R., Stark, C. E., & Clark, R. E. (2004). The medial temporal lobe. Annual Review of Neuroscience, 27, 279–306. https://doi.org/10.1146/annurev.neuro.27.070203.144130

    Article  CAS  PubMed  Google Scholar 

  38. Becker, S., & Wojtowicz, J. M. (2007). A model of hippocampal neurogenesis in memory and mood disorders. Trends in cognitive sciences, 11(2), 70–76. https://doi.org/10.1016/j.tics.2006.10.013

    Article  PubMed  Google Scholar 

  39. Taufique, S. T., & Kumar, V. (2016). Differential activation and tyrosine hydroxylase distribution in the hippocampal, pallial and midbrain brain regions in response to cognitive performance in Indian house crows exposed to abrupt light environment. Behavioural Brain Research, 314, 21–29. https://doi.org/10.1016/j.bbr.2016.07.046

    Article  CAS  PubMed  Google Scholar 

  40. Langston, R. F., & Wood, E. R. (2010). Associative recognition and the hippocampus: Differential effects of hippocampal lesions on object-place, object-context and object-place-context memory. Hippocampus, 20(10), 1139–1153. https://doi.org/10.1002/hipo.20714

    Article  PubMed  Google Scholar 

  41. Clayton, N. S., & Emery, N. J. (2015). Avian models for human cognitive neuroscience: A proposal. Neuron, 86(6), 1330–1342. https://doi.org/10.1016/j.neuron.2015.04.024

    Article  CAS  PubMed  Google Scholar 

  42. Bingman, V. P., Gagliardo, A., Hough, G. E., Ioalé, P., Kahn, M. C., & Siegel, J. J. (2005). The avian hippocampus, homing in pigeons and the memory representation of large-scale space. Integrative and Comparative Biology, 45(3), 555–564. https://doi.org/10.1093/icb/45.3.555

    Article  PubMed  Google Scholar 

  43. Tulving, E., & Donaldson, W. (1972). Organization of memory. Academic Press.

    Google Scholar 

  44. Patton, T. B., Husband, S. A., & Shimizu, T. (2009). Female stimuli trigger gene expression in male pigeons. Social Neuroscience, 4(1), 28–39. https://doi.org/10.1080/17470910801936803

    Article  PubMed  Google Scholar 

  45. Diekamp, B., Kalt, T., & Güntürkün, O. (2002). Working memory neurons in pigeons. The Journal of Neuroscience, 22(4), 2RC210.

    Article  Google Scholar 

  46. Wise, R. A. (2004). Dopamine, learning and motivation. Nature Reviews Neuroscience, 5(6), 483–494. https://doi.org/10.1038/nrn1406

    Article  CAS  PubMed  Google Scholar 

  47. Puig, M. V., Antzoulatos, E. G., & Miller, E. K. (2014). Prefrontal dopamine in associative learning and memory. Neuroscience, 282, 217–229. https://doi.org/10.1016/j.neuroscience.2014.09.026

    Article  CAS  PubMed  Google Scholar 

  48. Yamada, K., Mizuno, M., & Nabeshima, T. (2002). Role for brain-derived neurotrophic factor in learning and memory. Life Sciences, 70(7), 735–744. https://doi.org/10.1016/S0024-3205(01)01461-8

    Article  CAS  PubMed  Google Scholar 

  49. Jha, N. A., & Kumar, V. (2017). Effect of no-night light environment on behaviour, learning performance and personality in zebra finches. Animal Behaviour, 132, 29–47. https://doi.org/10.1016/j.anbehav.2017.07.017

    Article  Google Scholar 

  50. Prabhat, A., Buniyaadi, A., Bhardwaj, S. K., & Kumar, V. (2023). Differential effects of continuous and intermittent daytime food deprivation periods on metabolism and reproductive performance in diurnal Zebra Finches. Hormones and Behavior, 152, 105353. https://doi.org/10.1016/j.yhbeh.2023.105353

    Article  CAS  PubMed  Google Scholar 

  51. Mainwaring, M. C., Beal, J. L., & Hartley, I. R. (2011). Zebra finches are bolder in an asocial, rather than social, context. Behavioural Processes, 87(2), 171–175. https://doi.org/10.1016/j.beproc.2011.03.005

    Article  PubMed  Google Scholar 

  52. Boogert, N. J., Giraldeau, L. A., & Lefebvre, L. (2008). Song complexity correlates with learning ability in zebra finch males. Animal Behaviour, 76(5), 1735–1741. https://doi.org/10.1016/j.anbehav.2008.08.009

    Article  Google Scholar 

  53. Fusani, L., Hutchison, J. B., & Gahr, M. (2001). Testosterone regulates the activity and expression of aromatase in the canary neostriatum. Journal of Neurobiology, 49(1), 1–8. https://doi.org/10.1002/neu.1061

    Article  CAS  PubMed  Google Scholar 

  54. Nixdorf-Bergweiler, B. E., & Bischof, H. J. (2007). Introduction to the atlas. A stereotaxic atlas of the brain of the zebra finch, Taeniopygia guttata: with special emphasis on telencephalic visual and song system nuclei in transverse and sagittal sections [internet]. National Center for Biotechnology Information (US)

    Google Scholar 

  55. Davies-Thompson, J., & Andrews, T. J. (2012). Intra-and interhemispheric connectivity between face-selective regions in the human brain. Journal of Neurophysiology, 108(11), 3087–3095. https://doi.org/10.1152/jn.01171.2011

    Article  PubMed  PubMed Central  Google Scholar 

  56. Sharma, A., Singh, D., Malik, S., Gupta, N. J., Rani, S., & Kumar, V. (2018). Difference in control between spring and autumn migration in birds: Insight from seasonal changes in hypothalamic gene expression in captive buntings. Proceedings of the Royal Society B, 285(1885), 20181531. https://doi.org/10.1098/rspb.2018.1531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods, 25, 402–408.

    Article  CAS  PubMed  Google Scholar 

  58. Pilcher, J. J., & Huffcutt, A. I. (1996). Effects of sleep deprivation on performance: A meta-analysis. Sleep, 19(4), 318–326. https://doi.org/10.1093/sleep/19.4.318

    Article  CAS  PubMed  Google Scholar 

  59. Harrison, Y., & Horne, J. A. (2000). The impact of sleep deprivation on decision making: A review. Journal of Experimental Psychology, 6(3), 236.

    CAS  PubMed  Google Scholar 

  60. Van Dongen, H. P., Maislin, G., Mullington, J. M., & Dinges, D. F. (2003). The cumulative cost of additional wakefulness: Dose-response effects on neurobehavioral functions and sleep physiology from chronic sleep restriction and total sleep deprivation. Sleep, 26(2), 117–126. https://doi.org/10.1093/sleep/26.2.117

    Article  PubMed  Google Scholar 

  61. Van Dongen, P. A., Baynard, M. D., Maislin, G., & Dinges, D. F. (2004). Systematic interindividual differences in neurobehavioral impairment from sleep loss: Evidence of trait-like differential vulnerability. Sleep, 27(3), 423–433. https://doi.org/10.1093/sleep/27.3.423

    Article  PubMed  Google Scholar 

  62. Alhola, P., & Polo-Kantola, P. (2007). Sleep deprivation: Impact on cognitive performance. Neuropsychiatric Disease and Treatment, 3(5), 553–567.

    PubMed  PubMed Central  Google Scholar 

  63. Tucker, A. M., Whitney, P., Belenky, G., Hinson, J. M., & Van Dongen, H. P. (2010). Effects of sleep deprivation on dissociated components of executive functioning. Sleep, 33(1), 47–57. https://doi.org/10.1093/sleep/33.1.47

    Article  PubMed  PubMed Central  Google Scholar 

  64. Killgore, W. D. (2010). Effects of sleep deprivation on cognition. Progress in Brain Research, 185, 105–129. https://doi.org/10.1016/B978-0-444-53702-7.00007-5

    Article  PubMed  Google Scholar 

  65. Buniyaadi, A., Prabhat, A., Bhardwaj, S. K., & Kumar, V. (2022). Night melatonin levels affect cognition in diurnal animals: Molecular insights from a corvid exposed to an illuminated night environment. Environmental Pollution, 308, 119618. https://doi.org/10.1016/j.envpol.2022.119618

    Article  CAS  PubMed  Google Scholar 

  66. McGaugh, J. L. (2000). Memory–a century of consolidation. Science, 287(5451), 248–251. https://doi.org/10.1126/science.287.5451.248

    Article  CAS  PubMed  Google Scholar 

  67. Rasch, B., & Born, J. (2013). About sleep’s role in memory. Physiological Reviews. https://doi.org/10.1152/physrev.00032.2012

    Article  PubMed  PubMed Central  Google Scholar 

  68. Pinheiro-da-Silva, J., Silva, P. F., Nogueira, M. B., & Luchiari, A. C. (2017). Sleep deprivation effects on object discrimination task in zebrafish (Danio rerio). Animal cognition, 20, 159–169. https://doi.org/10.1007/s10071-016-1034-x

    Article  PubMed  Google Scholar 

  69. Samson, D. R., Vining, A., & Nunn, C. L. (2019). Sleep influences cognitive performance in lemurs. Animal Cognition, 22, 697–706. https://doi.org/10.1007/s10071-019-01266-1

    Article  PubMed  Google Scholar 

  70. Berridge, K. C. (2007). The debate over dopamine’s role in reward: The case for incentive salience. Psychopharmacology (Berlin), 191, 391–431.

    Article  CAS  Google Scholar 

  71. Li, M. M., Fan, J. T., Cheng, S. G., Yang, L. F., Yang, L., Wang, L. F., Shang, Z. G., & Wan, H. (2021). Enhanced hippocampus-nidopallium caudolaterale connectivity during route formation in goal-directed spatial learning of pigeons. Animals, 11(7), 2003. https://doi.org/10.3390/ani11072003

    Article  PubMed  PubMed Central  Google Scholar 

  72. Durstewitz, D., Kröner, S., & Güntürkün, O. (1999). The dopaminergic innervation of the avian telencephalon. Progress in Neurobiology, 59(2), 161–195. https://doi.org/10.1016/S0301-0082(98)00100-2

    Article  CAS  PubMed  Google Scholar 

  73. Kafkas, A., & Montaldi, D. (2015). Striatal and midbrain connectivity with the hippocampus selectively boosts memory for contextual novelty. Hippocampus, 25(11), 1262–1273. https://doi.org/10.1002/hipo.22434

    Article  PubMed  PubMed Central  Google Scholar 

  74. Moaraf, S., Vistoropsky, Y., Pozner, T., Heiblum, R., Okuliarová, M., Zeman, M., & Barnea, A. (2020). Artificial light at night affects brain plasticity and melatonin in birds. Neuroscience Letters, 716, 134639. https://doi.org/10.1016/j.neulet.2019.134639

    Article  CAS  PubMed  Google Scholar 

  75. Namgyal, D., Chandan, K., Sultan, A., Aftab, M., Ali, S., Mehta, R., El-Serehy, H. A., Al-Misned, F. A., & Sarwat, M. (2020). Dim light at night induced neurodegeneration and ameliorative effect of curcumin. Cells, 9(9), 2093. https://doi.org/10.3390/cells9092093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Alder, J., Thakker-Varia, S., Bangasser, D. A., Kuroiwa, M., Plummer, M. R., Shors, T. J., & Black, I. B. (2003). Brain-derived neurotrophic factor-induced gene expression reveals novel actions of VGF in hippocampal synaptic plasticity. Journal of Neuroscience, 23(34), 10800–10808. https://doi.org/10.1523/JNEUROSCI.23-34-10800.2003

    Article  CAS  PubMed  Google Scholar 

  77. Roberts, D. S., Hu, Y., Lund, I. V., Brooks-Kayal, A. R., & Russek, S. J. (2006). Brain-derived neurotrophic factor (BDNF)-induced synthesis of early growth response factor 3 (Egr3) controls the levels of type a GABA Receptorα4 subunits in hippocampal neurons. Journal of Biological Chemistry, 281(40), 29431–29435. https://doi.org/10.1074/jbc.C600167200

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a research grant by the Science and Engineering Research Board (# CRG/2019/000321) to SKB and VK. VK is currently supported by the award of a BSR faculty fellowship by the University Grants Commission of India (# F. No. 26-13/2020 BSR). AK received a DST-INSPIRE fellowship. We acknowledge the help of Mr. Mayank Kumar during this study.

Funding

This research was funded by Science and Engineering Research Board, Grant no [CRG000321, UGC, Grant no [26-13/2020 BSR] and DST INSPIRE Grant no [201900028078].

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: SKB, VK; Methodology: AK, AP and SKB; Formal analysis and investigation: AK and AP; Writing—original draft preparation: AK, SKB and AP; Writing—review and editing: VK, SKB, AK and AP; Revision: AK, SKB, VK; Funding acquisition: SKB and VK; Resources: SKB; Supervision: SKB and VK.

Corresponding author

Correspondence to Sanjay Kumar Bhardwaj.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethical declarations

The experiments were performed as per approval and guidelines of the Institutional Ethics Committee of Chaudhary Charan Singh University, Meerut, India (Protocol # IAEC-2022/08).

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 13 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Prabhat, A., Kumar, V. et al. Artificial night illumination disrupts sleep, and attenuates mood and learning in diurnal animals: evidence from behavior and gene expression studies in zebra finches. Photochem Photobiol Sci 22, 2247–2257 (2023). https://doi.org/10.1007/s43630-023-00447-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-023-00447-9

Keywords

Navigation