Skip to main content
Log in

Higher stability and better photoluminescence quantum yield of cesium lead iodide perovskites nanoparticles in the presence of CTAB ligand

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Inorganic halide perovskites, such as CsPbI3, have unique optoelectronic properties which made them promising candidates for several applications. Unfortunately, these perovskites undergo rapid chemical decomposition and transformation into yellow δ-phase. Thus, the synthesis of stable cesium lead iodide perovskites remains an actual challenging field and it is imperative to develop a stabilized black phase for photovoltaic applications. For this purpose, a surfactant ligand was used to control the synthesis of inorganic perovskite CsPbI3 nanoparticles. Herein we demonstrate a new avenue for lead halide perovskites with the addition of either hexadecyltrimethylammonium bromide (CTAB) or silica nanoparticles to maintain in the first place; the stability of the α-CsPbI3 phase, and later on to boost their photoluminescence quantum yield (PLQY). The prepared perovskites were characterized using UV–visible absorption spectroscopy, fluorescence spectroscopy, scanning electron microscopy, thermogravimetric analysis and X-Ray diffraction technique. Results show higher stability of α-CsPbI3 phase and improvement in PLQY % to reach 99% enhancement in presence of CTAB. Moreover, the photoluminescence intensity of CsPbI3 nanoparticles was higher and was maintained for a longer duration in the presence of CTAB.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Atta, N. F., Galal, A., & El-Ads, E. H. (2016). Perovskite nanomaterials—Synthesis, characterization, and applications. In L. Pan, G. Zhu (Eds.), Perovskite Materials-Synthesis, Characterisation, Properties, and Applications (pp. 107–152). Rijeka, Croata: InTech.

    Google Scholar 

  2. Dimitrovska, S., Aleksovska, S., & Kuzmanovski, I. (2005). Prediction of the unit cell edge length of cubic A22+BB′O6 perovskites by multiple linear regression and artificial neural networks. Central European Journal of Chemistry, 3(1), 198–215.

    Google Scholar 

  3. Snaith, H. J. (2013). Perovskites: The emergence of a new era for low-cost, high-efficiency solar cells. Journal of Physical Chemistry Letters, 4(21), 3623–3630.

    CAS  Google Scholar 

  4. Manseki, K., Ikeya, T., Tamura, A., Ban, T., Sugiura, T., & Yoshida, T. (2014). Mg-doped TiO2 nanorods improving open-circuit voltages of ammonium lead halide perovskite solar cells. RSC Advances, 4(19), 9652–9655.

    CAS  Google Scholar 

  5. Kim, H.-S., Lee, C.-R., Im, J.-H., Lee, K.-B., Moehl, T., Marchioro, A., Moon, S.-J., Humphry-Baker, R., Yum, J.-H., Moser, J. E., Grätzel, M., & Park, N.-G. (2012). Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Scientific Reports, 2, 1–7.

    Google Scholar 

  6. Stranks, S. D., & Snaith, H. J. (2015). Metal-halide perovskites for photovoltaic and light-emitting devices. Nature Nanotechnology, 10(5), 391–402.

    CAS  PubMed  Google Scholar 

  7. Petrović, M., Chellappan, V., & Ramakrishna, S. (2015). Perovskites: Solar cells & engineering applications—Materials and device developments. Solar Energy, 122, 678–699.

    Google Scholar 

  8. Wang, J., Shi, S. Q., Chen, L. Q., Li, Y., & Zhang, T. Y. (2004). Phase-field simulations of ferroelectric/ferroelastic polarization switching. Acta Materialia, 52(3), 749–764.

    CAS  Google Scholar 

  9. Spaldin, N. A., Cheong, S. W., & Ramesh, R. (2010). Multiferroics: Past, present, and future. Physics Today, 63(10), 38–43.

    Google Scholar 

  10. Wang, C., Jin, K., Zhao, R., Lu, H., Guo, H., Ge, C., He, M., Wang, C., & Yang, G. (2011). Ultimate photovoltage in perovskite oxide heterostructures with critical film thickness. Applied Physics Letters, 98(18), 2009–2012.

    Google Scholar 

  11. Nieto, S., Polanco, R., & Roque-Malherbe, R. (2007). Absorption kinetics of hydrogen in nanocrystals of BaCe 0.95Yb0.05O3-δ proton-conducting perovskite. Journal of Physical Chemistry C, 111(6), 2809–2818.

    CAS  Google Scholar 

  12. Mankiewich, P. M., Scofield, J. H., Skocpol, W. J., Howard, R. E., Dayem, A. H., & Good, E. (1987). Reproducible technique for fabrication of thin films of high transition temperature superconductors. Applied Physics Letters, 51(21), 1753–1755.

    CAS  Google Scholar 

  13. Pottathara, Y. B., & Thomas, S. (2019). Synthesis and processing of emerging two-dimensional nanomaterials. Amsterdam: ScienceDirect.

    Google Scholar 

  14. Nakamura, T., Misono, M., & Yoneda, Y. (1983). Reduction–oxidation and catalytic properties of La1 - xSrxCoO3. Journal of Catalysis, 83(1), 151–159.

    CAS  Google Scholar 

  15. Esposito, S. (2019). ‘Traditional’ sol–gel chemistry as a powerful tool for the preparation of supported metal and metal oxide catalysts. Materials (Basel), 12(4), 1–25.

    Google Scholar 

  16. Kemnitz, E., & Noack, J. (2015). The non-aqueous fluorolytic sol–gel synthesis of nanoscaled metal fluorides. The Royal Society of Chemistry, 44, 19411–19431.

    CAS  Google Scholar 

  17. Lozano-Gorrin, A. D. (2012). Structural characterization of new perovskites (pp. 107–204). London: Intech.

    Google Scholar 

  18. Wang, Q., Zheng, X., Deng, Y., Zhao, J., Chen, Z., & Huang, J. (2017). Stabilizing the α-phase of CsPbI3 perovskite by sulfobetaine zwitterions in one-step spin-coating films. Joule, 1(2), 371–382.

    CAS  Google Scholar 

  19. Marronnier, A., Roma, G., Boyer-Richard, S., Pedesseau, L., Jancu, J. M., Bonnassieux, Y., Katan, C., Stoumpos, C. C., Kanatzidis, M. G., & Even, J. (2018). Anharmonicity and disorder in the black phases of CsPbI3 used for stable inorganic perovskite solar cells. American Chemical Society, 3, 1715–1717.

    Google Scholar 

  20. Zhou, Y., & Yixin, Z. (2019). Chemical stability and instability of inorganic halide perovskites. Energy & Environmental Science, 12, 1495–1511.

    CAS  Google Scholar 

  21. Protesescu, L., Yakunin, S., Bodnarchuk, M. I., Krieg, F., Caputo, R., Hendon, C. H., Yang, R. X., Walsh, A., & Kovalenko, M. V. (2015). Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Letters, 6, 3692–3696.

    Google Scholar 

  22. Dastidar, S., Egger, D. A., Tan, L. Z., Cromer, S. B., Dillon, A. D., Liu, S., Kronik, L., Rappe, A. M., & Fafarman, A. T. (2016). High chloride doping levels stabilize the perovskite phase of cesium lead iodide. Nano Letters, 16(6), 3563–3570.

    CAS  PubMed  Google Scholar 

  23. Cai, Y., Zhang, P., Bai, W., Lu, L., Wang, L., Chen, X., & Xie, R. J. (2022). Synthesizing bright CsPbBr3 perovskite nanocrystals with high purification yields and their composites with in situ-polymerized styrene for light-emitting diode applications. ACS Sustainable Chemistry & Engineering, 10(22), 7385–7393.

    CAS  Google Scholar 

  24. Rao, K. S., El-Hami, K., Kodaki, T., Matsushige, K., & Makino, K. (2005). A novel method for synthesis of silica nanoparticles. Journal of Colloid and Interface Science, 289(1), 125–131.

    CAS  PubMed  Google Scholar 

  25. Murphy, J. P. (2018). Novel hybrid perovskite composites and microstructures: Synthesis and characterization (pp. 1–110). Mont. Tech Libr., no. June.

  26. Hu, Y., Bai, F., Liu, X., Ji, Q., Miao, X., Qiu, T., & Zhang, S. (2017). Bismuth incorporation stabilized α-CsPbI3 for fully inorganic perovskite solar cells. American Chemical Society, 2(10), 2219–2227.

    CAS  Google Scholar 

  27. Protesescu, L., Yakunin, S., Bodnarchuk, M. I., Krieg, F., Caputo, R., Hendon, C. H., Yang, R. X., Walsh, A., & Kovalenko, M. V. (2015). Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Letters, 15(6), 3692–3696.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Wu, X., Trinh, M. T., Niesner, D., Zhu, H., Norman, Z., Owen, J. S., Yaffe, O., Kudisch, B. J., & Zhu, X. Y. (2015). Trap states in lead iodide perovskites. Journal of the American Chemical Society, 137(5), 2089–2096.

    CAS  PubMed  Google Scholar 

  29. Eze, V. O., Lei, B., & Mori, T. (2016). Air-assisted flow and two-step spin-coating for highly efficient CH3NH3PbI3 perovskite solar cells. Japanese Journal of Applied Physics, 55(2), 2–8.

    Google Scholar 

  30. Kumar, M., Pawar, V., Jha, P. A., Gupta, S. K., Sinha, A. S., Jha, P. K., & Singh, P. (2019). Thermo-optical correlation for room temperature synthesis: cold-sintered lead halides. Journal of Materials Science: Materials in Electronics, 30(6), 6071–6081.

    CAS  Google Scholar 

  31. Aleksanyan, E., Aprahamian, A., Mukasyan, A. S., Harutyunyan, V., & Manukyan, K. V. (2020). Mechanisms of mechanochemical synthesis of cesium lead halides: Pathways toward stabilization of α-CsPbI3. Journal of Materials Science, 55(20), 8665–8678.

    CAS  Google Scholar 

  32. Miyasaka, T., Kulkarni, A., Kim, G. M., Öz, S., & Jena, A. K. (2020). Perovskite solar cells: can we go organic-free, lead-free, and dopant-free? Advanced Energy Materials, 10(13), 1902500.

    CAS  Google Scholar 

  33. Monshi, A., Foroughi, M. R., & Monshi, M. R. (2012). Modified scherrer equation to estimate more accurately nano-crystallite size using XRD. World Journal of Nano Science and Engineering, 2(3), 154–160.

    Google Scholar 

  34. Boote, B. W., Andaraarachchi, H. P., Rosales, B. A., Blome-Fernández, R., Zhu, F., Reichert, M. D., Santra, K., Li, J., Petrich, J. W., Vela, J., & Smith, E. A. (2019). Unveiling the photo- and thermal-stability of cesium lead halide perovskite nanocrystals. ChemPhysChem, 20(20), 2647–2656.

    CAS  PubMed  Google Scholar 

  35. Cho, N.-K., Na, H.-J., Yoo, J., & Kim, Y. S. (2021). Long-term stability in γ-CsPbI3 perovskite via an ultraviolet-curable polymer network. Communications Materials, 2(1), 1–8.

    Google Scholar 

  36. Ji, Y., Zhang, J. B., Shen, H. R., Su, Z., Cui, H., Lan, T., Wang, J. Q., Chen, Y. H., Liu, L., Cao, K., & Shen, W. (2021). Improving the stability of α-CsPbI3 nanocrystals in extreme conditions facilitated by Mn2+ doping. ACS Omega, 6(21), 13831–13838.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Motta, C., El-Mellouhi, F., Kais, S., Tabet, N., Alharbi, F., & Sanvito, S. (2015). Revealing the role of organic cations in hybrid halide perovskite CH3 NH3PbI3. Nature Communications, 6, 1–7.

    Google Scholar 

  38. Ma, J., & Wang, L. W. (2015). Nanoscale charge localization induced by random orientations of organic molecules in hybrid perovskite CH3NH3PbI3. Nano Letters, 15(1), 248–253.

    CAS  PubMed  Google Scholar 

  39. Zhou, Y., Huang, F., Cheng, Y. B., & Gray-Weale, A. (2015). Photovoltaic performance and the energy landscape of CH3NH3PbI3. Physical Chemistry Chemical Physics: PCCP, 17(35), 22604–22615.

    CAS  PubMed  Google Scholar 

  40. Mosconi, E., Meggiolaro, D., Snaith, H. J., Stranks, S. D., & De Angelis, F. (2016). Light-induced annihilation of Frenkel defects in organo-lead halide perovskites. Energy & Environmental Science, 9(10), 3180–3187.

    CAS  Google Scholar 

  41. Ghorai, A., Midya, A., & Ray, S. K. (2019). Surfactant-induced anion exchange and morphological evolution for composition-controlled caesium lead halide perovskites with tunable optical properties. ACS Omega, 4(7), 12948–12954.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Resch-Genger, U., & Rurack, K. (2013). Determination of the photoluminescence quantum yield of dilute dye solutions. Pure and Applied Chemistry, 85(10), 2005–2026.

    CAS  Google Scholar 

  43. Rene-Boisneuf, L., & Scaiano, J. C. (2008). Sensitivity versus stability: Making quantum dots more luminescent by sulfur photocuring without compromising sensor response. Chemistry of Materials, 20(21), 6638–6642.

    CAS  Google Scholar 

  44. Resch-Genger, U., & Rurack, K. (2013). Determination of the photoluminescence quantum yield of dilute dye solutions (IUPAC Technical Report). Pure and Applied Chemistry, 85(10), 2005–2026.

    CAS  Google Scholar 

  45. Bi, C., Kershaw, S. V., Rogach, A. L., & Tian, J. (2019). Improved stability and photodetector performance of CsPbI3 perovskite quantum dots by ligand exchange with aminoethanethiol. Advanced Functional Materials, 29(29), 1–9.

    Google Scholar 

  46. Zhang, L., Kang, C., Zhang, G., Pan, Z., Huang, Z., Xu, S., Rao, H., Liu, H., Wu, S., Wu, X., & Li, X. (2021). All-inorganic CsPbI3 quantum dot solar cells with efficiency over 16% by defect control. Advanced Functional Materials, 31(4), 1–10.

    Google Scholar 

  47. Shao, Y., Zhang, C., Zhou, C., Wang, T., Chen, J., Liu, X., Lin, J., & Chen, X. (2022). Designable and highly stable emissive CsPbI3 perovskite quantum dots/polyvinylidene fluoride nanofiber composites. Optical Materials Express, 12(1), 109.

    CAS  Google Scholar 

  48. Chen, L. C., Chang, Y. T., Tien, C. H., Yeh, Y. C., Tseng, Z. L., Lee, K. L., & Kuo, H. C. (2020). Red light-emitting diodes with all-inorganic CsPbI3/TOPO composite nanowires color conversion films. Nanoscale Research Letters, 15(1), 9.

    CAS  Google Scholar 

Download references

Acknowledgements

Financial support provided by American University of Beirut, Lebanon through University Research Board (URB) as well as Kamal A. Shair Central Research Laboratory (KAS CRSL) facilities to carry out this work is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Digambara Patra.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Tawil, C., El Kurdi, R. & Patra, D. Higher stability and better photoluminescence quantum yield of cesium lead iodide perovskites nanoparticles in the presence of CTAB ligand. Photochem Photobiol Sci 22, 2167–2178 (2023). https://doi.org/10.1007/s43630-023-00439-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-023-00439-9

Keywords

Navigation