Skip to main content
Log in

UV-B-induced modulation of constitutive heterochromatin content in Arabidopsis thaliana

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Sunlight regulates transcriptional programs and triggers the shaping of the genome throughout plant development. Among the different sunlight wavelengths that reach the surface of the Earth, UV-B (280–315 nm) controls the expression of hundreds of genes for the photomorphogenic responses and also induces the formation of photodamage that interfere with genome integrity and transcriptional programs. The combination of cytogenetics and deep-learning-based analyses allowed determining the location of UV-B-induced photoproducts and quantifying the effects of UV-B irradiation on constitutive heterochromatin content in different Arabidopsis natural variants acclimated to various UV-B regimes. We identified that UV-B-induced photolesions are enriched within chromocenters. Furthermore, we uncovered that UV-B irradiation promotes constitutive heterochromatin dynamics that differs among the Arabidopsis ecotypes having divergent heterochromatin contents. Finally, we identified that the proper restoration of the chromocenter shape, upon DNA repair, relies on the UV-B photoreceptor, UV RESISTANCE LOCUS 8 (UVR8). These findings shed the light on the effect of UV-B exposure and perception in the modulation of constitutive heterochromatin content in Arabidopsis thaliana.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data (i.e microscopy images) will be available on demand.

References

  1. Heslop-Harrison (Pat), J. S., & Schwarzacher, T. (2011). Organisation of the plant genome in chromosomes. Plant Journal, 66, 18–33. https://doi.org/10.1111/j.1365-313X.2011.04544.x

    Article  CAS  Google Scholar 

  2. Fransz, P., Soppe, W., & Schubert, I. (2003). Heterochromatin in interphase nuclei of Arabidopsis thaliana. Chromosome Research, 11, 227–240. https://doi.org/10.1023/a:1022835825899

    Article  CAS  PubMed  Google Scholar 

  3. Pavet, V., Quintero, C., Cecchini, N. M., Rosa, A. L., & Alvarez, M. E. (2006). Arabidopsis displays centromeric DNA hypomethylation and cytological alterations of heterochromatin upon attack by Pseudomonas syringae. MPMI, 19, 577–587. https://doi.org/10.1094/MPMI-19-0577

    Article  CAS  PubMed  Google Scholar 

  4. Pecinka, A., Dinh, H. Q., Baubec, T., Rosa, M., Lettner, N., & Scheid, O. M. (2010). Epigenetic regulation of repetitive elements is attenuated by prolonged heat stress in Arabidopsis. The Plant Cell, 22, 3118–3129. https://doi.org/10.1105/tpc.110.078493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Perrella, G., & Kaiserli, E. (2016). Light behind the curtain: photoregulation of nuclear architecture and chromatin dynamics in plants. New Phytologist, 212, 908–919. https://doi.org/10.1111/nph.14269

    Article  CAS  PubMed  Google Scholar 

  6. Barneche, F., Malapeira, J., & Mas, P. (2014). The impact of chromatin dynamics on plant light responses and circadian clock function. Journal of Experimental Botany, 65, 2895–2913. https://doi.org/10.1093/jxb/eru011

    Article  PubMed  Google Scholar 

  7. Probst, A. V., & Mittelsten Scheid, O. (2015). Stress-induced structural changes in plant chromatin. Current Opinion in Plant Biology, 27, 8–16. https://doi.org/10.1016/j.pbi.2015.05.011

    Article  CAS  PubMed  Google Scholar 

  8. Patitaki, E., Schivre, G., Zioutopoulou, A., Perrella, G., Bourbousse, C., Barneche, F., & Kaiserli, E. (2022). Light, chromatin, action: nuclear events regulating light signaling in Arabidopsis. New Phytologist, 236, 333–349. https://doi.org/10.1111/nph.18424

    Article  CAS  PubMed  Google Scholar 

  9. Bourbousse, C., Mestiri, I., Zabulon, G., Bourge, M., Formiggini, F., Koini, M. A., Brown, S. C., Fransz, P., Bowler, C., & Barneche, F. (2015). Light signaling controls nuclear architecture reorganization during seedling establishment. Proceedings of the National academy of Sciences of the United States of America, 112, E2836-2844. https://doi.org/10.1073/pnas.1503512112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jiang, J., Liu, J., Sanders, D., Qian, S., Ren, W., Song, J., Liu, F., & Zhong, X. (2021). UVR8 interacts with de novo DNA methyltransferase and suppresses DNA methylation in Arabidopsis. Nat Plants, 7, 184–197. https://doi.org/10.1038/s41477-020-00843-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Walbot, V. (1999). UV-B damage amplified by transposons in maize. Nature, 397, 398–399. https://doi.org/10.1038/17043

    Article  CAS  PubMed  Google Scholar 

  12. Questa, J., Walbot, V., & Casati, P. (2013). UV-B radiation induces Mu element somatic transposition in maize. Molecular Plant, 6, 2004–2007. https://doi.org/10.1093/mp/sst112

    Article  CAS  PubMed  Google Scholar 

  13. Alonso-Blanco, C., Andrade, J., Becker, C., Bemm, F., Bergelson, J., Borgwardt, K. M., Cao, J., Chae, E., Dezwaan, T. M., Ding, W., Ecker, J. R., Exposito-Alonso, M., Farlow, A., Fitz, J., Gan, X., Grimm, D. G., Hancock, A. M., Henz, S. R., Holm, S., … Zhou, X. (2016). 1,135 genomes reveal the global pattern of polymorphism in Arabidopsis thaliana. Cell, 166, 481–491. https://doi.org/10.1016/j.cell.2016.05.063

    Article  CAS  Google Scholar 

  14. Tessadori, F., van Zanten, M., Pavlova, P., Clifton, R., Pontvianne, F., Snoek, L. B., Millenaar, F. F., Schulkes, R. K., van Driel, R., Voesenek, L. A. C. J., Spillane, C., Pikaard, C. S., Fransz, P., & Peeters, A. J. M. (2009). Phytochrome B and histone deacetylase 6 control light-induced chromatin compaction in Arabidopsis thaliana. PLoS Genetics, 5, e1000638. https://doi.org/10.1371/journal.pgen.1000638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Snoek, B. L., Pavlova, P., Tessadori, F., Peeters, A. J. M., Bourbousse, C., Barneche, F., de Jong, H., Fransz, P. F., & van Zanten, M. (2017). Genetic dissection of morphometric traits reveals that phytochrome B affects nucleus size and heterochromatin organization in Arabidopsis thaliana. G3 (Bethesda), 7, 2519–2531. https://doi.org/10.1534/g3.117.043539

    Article  CAS  PubMed  Google Scholar 

  16. Pavlova, P., van Zanten, M., Snoek, B. L., de Jong, H., & Fransz, P. (2022). 2D morphometric analysis of Arabidopsis thaliana nuclei reveals characteristic profiles of different cell types and accessions. Chromosome Research, 30, 5–24. https://doi.org/10.1007/s10577-021-09673-2

    Article  CAS  PubMed  Google Scholar 

  17. Schuch, A. P., Moreno, N. C., Schuch, N. J., Menck, C. F. M., & Garcia, C. C. M. (2017). Sunlight damage to cellular DNA: focus on oxidatively generated lesions. Free Radical Biology & Medicine, 107, 110–124. https://doi.org/10.1016/j.freeradbiomed.2017.01.029

    Article  CAS  Google Scholar 

  18. Markovitsi, D. (2016). UV-induced DNA Damage: the role of electronic excited states. Photochemistry and Photobiology, 92, 45–51. https://doi.org/10.1111/php.12533

    Article  CAS  PubMed  Google Scholar 

  19. Britt, A. B. (1995). Repair of DNA damage induced by ultraviolet radiation. Plant Physiology, 108, 891–896.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Banaś, A. K., Zgłobicki, P., Kowalska, E., Bażant, A., Dziga, D., & Strzałka, W. (2020). All you need is light. Photorepair of UV-induced pyrimidine dimers. Genes, 11, 1304. https://doi.org/10.3390/genes11111304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kimura, S., & Sakaguchi, K. (2006). DNA repair in plants. Chemical Reviews, 106, 753–766. https://doi.org/10.1021/cr040482n

    Article  CAS  PubMed  Google Scholar 

  22. Green, C. M., & Almouzni, G. (2002). When repair meets chromatin. First in series on chromatin dynamics. EMBO Reports, 3, 28–33. https://doi.org/10.1093/embo-reports/kvf005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Polo, S. E., & Almouzni, G. (2015). Chromatin dynamics after DNA damage: The legacy of the access-repair-restore model. DNA Repair (Amst), 36, 114–121. https://doi.org/10.1016/j.dnarep.2015.09.014

    Article  CAS  PubMed  Google Scholar 

  24. Fei, J., Kaczmarek, N., Luch, A., Glas, A., Carell, T., & Naegeli, H. (2011). Regulation of nucleotide excision repair by UV-DDB: prioritization of damage recognition to internucleosomal DNA. PLoS Biology. https://doi.org/10.1371/journal.pbio.1001183

    Article  PubMed  PubMed Central  Google Scholar 

  25. Gale, J. M., Nissen, K. A., & Smerdon, M. J. (1987). UV-induced formation of pyrimidine dimers in nucleosome core DNA is strongly modulated with a period of 10.3 bases. Proceedings of the National academy of Sciences of the United States of America, 84, 6644–6648. https://doi.org/10.1073/pnas.84.19.6644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Banyasz, A., Esposito, L., Douki, T., Perron, M., Lepori, C., Improta, R., & Markovitsi, D. (2016). Effect of C5-methylation of cytosine on the UV-induced reactivity of duplex DNA: conformational and electronic factors. The Journal of Physical Chemistry B, 120, 4232–4242. https://doi.org/10.1021/acs.jpcb.6b03340

    Article  CAS  PubMed  Google Scholar 

  27. Rochette, P. J., Lacoste, S., Therrien, J.-P., Bastien, N., Brash, D. E., & Drouin, R. (2009). Influence of cytosine methylation on ultraviolet-induced cyclobutane pyrimidine dimer formation in genomic DNA. Mutation Research, 665, 7–13. https://doi.org/10.1016/j.mrfmmm.2009.02.008

    Article  CAS  PubMed  Google Scholar 

  28. Hu, J., Adar, S., Selby, C. P., Lieb, J. D., & Sancar, A. (2015). Genome-wide analysis of human global and transcription-coupled excision repair of UV damage at single-nucleotide resolution. Genes & Development, 29, 948–960. https://doi.org/10.1101/gad.261271.115

    Article  CAS  Google Scholar 

  29. Wang, J., Li, X., Do Kim, K., Scanlon, M. J., Jackson, S. A., Springer, N. M., & Yu, J. (2019). Genome-wide nucleotide patterns and potential mechanisms of genome divergence following domestication in maize and soybean. Genome Biology, 20, 74. https://doi.org/10.1186/s13059-019-1683-6

    Article  PubMed  PubMed Central  Google Scholar 

  30. Beckmann, M., Václavík, T., Manceur, A. M., Šprtová, L., von Wehrden, H., Welk, E., & Cord, A. F. (2014). glUV: a global UV-B radiation data set for macroecological studies. Methods in Ecology and Evolution, 5, 372–383. https://doi.org/10.1111/2041-210X.12168

    Article  Google Scholar 

  31. Johann to Berens, P., Schivre, G., Theune, M., Peter, J., Sall, S. O., Mutterer, J., Barneche, F., Bourbousse, C., & Molinier, J. (2022). Advanced image analysis methods for automated segmentation of subnuclear chromatin domains. Epigenomes, 6, 34. https://doi.org/10.3390/epigenomes6040034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kawakatsu, T., Huang, S.-S.C., Jupe, F., Sasaki, E., Schmitz, R. J., Urich, M. A., Castanon, R., Nery, J. R., Barragan, C., He, Y., Chen, H., Dubin, M., Lee, C.-R., Wang, C., Bemm, F., Becker, C., O’Neil, R., O’Malley, R. C., Quarless, D. X., … Ecker, J. R. (2016). Epigenomic diversity in a global collection of Arabidopsis thaliana accessions. Cell, 166, 492–505. https://doi.org/10.1016/j.cell.2016.06.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jiao, W. B., & Schneeberger, K. (2020). Chromosome-level assemblies of multiple Arabidopsis genomes reveal hotspots of rearrangements with altered evolutionary dynamics. Nature Communications, 1, 989. https://doi.org/10.1038/s41467-020-14779-y

    Article  CAS  Google Scholar 

  34. Mathieu, O., Reinders, J., Čaikovski, M., Smathajitt, C., & Paszkowski, J. (2007). Transgenerational stability of the Arabidopsis epigenome is coordinated by CG methylation. Cell, 130, 851–862. https://doi.org/10.1016/j.cell.2007.07.007

    Article  CAS  PubMed  Google Scholar 

  35. Law, J. A., & Jacobsen, S. E. (2010). Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nature Reviews Genetics, 11, 204–220. https://doi.org/10.1038/nrg2719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Rozema, J., van de Staaij, J., Björn, L. O., & Caldwell, M. (1997). UV-B as an environmental factor in plant life: stress and regulation. Trends in Ecology & Evolution, 12, 22–28. https://doi.org/10.1016/S0169-5347(96)10062-8

    Article  CAS  Google Scholar 

  37. Molinier, J. (2017). Genome and epigenome surveillance processes underlying UV exposure in plants. Genes (Basel). https://doi.org/10.3390/genes8110316

    Article  PubMed  Google Scholar 

  38. Sun, L., Jing, Y., Liu, X., Li, Q., Xue, Z., Cheng, Z., Wang, D., He, H., & Qian, W. (2020). Heat stress-induced transposon activation correlates with 3D chromatin organization rearrangement in Arabidopsis. Nature Communications, 11, 1886. https://doi.org/10.1038/s41467-020-15809-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Graindorge, S., Cognat, V., Johann to Berens, P., Mutterer, J., & Molinier, J. (2019). Photodamage repair pathways contribute to the accurate maintenance of the DNA methylome landscape upon UV exposure. PLoS Genetics, 15, e1008476. https://doi.org/10.1371/journal.pgen.1008476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Singer, T., Yordan, C., & Martienssen, R. A. (2001). Robertson’s Mutator transposons in A. thaliana are regulated by the chromatin-remodeling gene decrease in DNA Methylation (DDM1). Genes & Development, 15, 591–602. https://doi.org/10.1101/gad.193701

    Article  CAS  Google Scholar 

  41. Lippman, Z., Gendrel, A.-V., Black, M., Vaughn, M. W., Dedhia, N., Richard McCombie, W., Lavine, K., Mittal, V., May, B., Kasschau, K. D., Carrington, J. C., Doerge, R. W., Colot, V., & Martienssen, R. (2004). Role of transposable elements in heterochromatin and epigenetic control. Nature, 430, 471–476. https://doi.org/10.1038/nature02651

    Article  CAS  PubMed  Google Scholar 

  42. Tittel-Elmer, M., Bucher, E., Broger, L., Mathieu, O., Paszkowski, J., & Vaillant, I. (2010). Stress-induced activation of heterochromatic transcription. PLOS Genetics, 6, e1001175. https://doi.org/10.1371/journal.pgen.1001175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Johann to Berens, P., & Molinier, J. (2020). Formation and recognition of UV-induced DNA damage within genome complexity. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms21186689

    Article  PubMed  PubMed Central  Google Scholar 

  44. Jenkins, G. I. (2017). Photomorphogenic responses to ultraviolet-B light. Plant, Cell & Environment, 40, 2544–2557. https://doi.org/10.1111/pce.12934

    Article  CAS  Google Scholar 

  45. Johnson, L. M., Law, J. A., Khattar, A., Henderson, I. R., & Jacobsen, S. E. (2008). SRA-domain proteins required for DRM2-mediated De Novo DNA methylation. PLOS Genetics, 4, e1000280. https://doi.org/10.1371/journal.pgen.1000280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Favory, J. J., Stec, A., Gruber, H., Rizzini, L., Oravecz, A., Funk, M., Albert, A., Cloix, C., Jenkins, G. I., Oakeley, E. J., Seidlitz, H. K., Nagy, F., & Ulm, R. (2009). Interaction of COP1 and UVR8 regulates UV-B-induced photomorphogenesis and stress acclimation in Arabidopsis. EMBO Journal, 5, 591–601. https://doi.org/10.1038/emboj.2009.4

    Article  CAS  Google Scholar 

  47. Castells, E., Molinier, J., Drevensek, S., Genschik, P., Barneche, F., & Bowler, C. (2010). det1-1-induced UV-C hyposensitivity through UVR3 and PHR1 photolyase gene over-expression. The Plant Journal, 63, 392–404. https://doi.org/10.1111/j.1365-313X.2010.04249.x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Prof. Roman Ulm for providing the uvr8-6 seeds. This research was funded by a grant from the French National Research Agency (ANR-20-CE20-002) and supported by the EPIPLANT Groupement de Recherche (CNRS, France). K.G. was supported by the ERASMUS program for higher education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Molinier.

Ethics declarations

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 8799 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Johann to Berens, P., Golebiewska, K., Peter, J. et al. UV-B-induced modulation of constitutive heterochromatin content in Arabidopsis thaliana. Photochem Photobiol Sci 22, 2153–2166 (2023). https://doi.org/10.1007/s43630-023-00438-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-023-00438-w

Keywords

Navigation