Skip to main content
Log in

Polymerization of tetrazine-substituted diacetylenes as aggregates in suspension

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Polydiacetylenes (PDAs) are conjugated polymers that have been widely exploited for their chromogenic and fluorogenic transitions upon exposure to external stimuli and biomolecules of interest. Herein, we propose a comparative study of the polymerization dynamics of two diacetylene derivatives, TzDA1 and TzDA2, in the form of aggregates in suspension prepared by reprecipitation method from organic solvents in water, varying the diacetylene concentration and solvent proportions, and sonication in water, varying the time and temperature. Both derivatives bear a tetrazine fluorophore, which serves both to increase the fluorescence quantum yield of the system and to track the polymerization by fluorescence quenching exclusively by the blue-PDA, and differ by the chain termination. It was shown that adding a butyl ester function in TzDA2 to a simple urethane (TzDA1) influences the polymerizability and kinetics of polymerization of the aggregates in suspension. In addition, we showed that also the preparation method and preparation conditions do have an influence on the polymerization dynamics, suggesting that a careful study of these properties should be carried out before investigating the applications of such objects.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data will be made available from the authors upon reasonable request.

References

  1. Wegner, G. (1969). Topochemische reaktionen von monomeren mit konjug ierten dreifachbindungen. Zeitschrift für Naturforschung. Teil B, 24, 824–832.

    CAS  Google Scholar 

  2. Qian, X., & Städler, B. (2019). Recent developments in polydiacetylene-based SENSORS. Chemistry of Materials, 31, 1196–1222.

    CAS  Google Scholar 

  3. Wegner, G. (1972). Topochemical polymerization of monomers with conjugated triple bonds. Makromolekulare Chemie, 154, 35–48.

    CAS  Google Scholar 

  4. Enkelmann, V. (1984). in Polydiacetylenes (pp. 91–136). Springer.

    Google Scholar 

  5. Bässler, H. (1984). in Polydiacetylenes (pp. 1–48). Springer.

    Google Scholar 

  6. Schott, M., Spagnoli, S., & Weiser, G. (2007). Photopolymerization quantum yields in two reactive diacetylenes, 3BCMU and 4BCMU, and relation to γ-ray induced polymerization. Chemical Physics, 333, 246–253.

    CAS  Google Scholar 

  7. Spagnoli, S., Fave, J.-L., & Schott, M. (2011). Photopolymerization of thin polycrystalline diacetylene films and quenching of the precursor excited state. Macromol., 44, 2613–2625.

    CAS  Google Scholar 

  8. Tieke, B., Graf, H.-J., Wegner, G., Naegele, B., Ringsdorf, H., Banerjie, A., Day, D., & Lando, J. B. (1977). Polymerization of mono- and multilayer forming diacetylenes. Colloid & Polymer Sci, 255, 521–531.

    CAS  Google Scholar 

  9. Patel, G. N., & Miller, G. G. (1981). Structure-property relationships of diacetylenes and their polymers. J. Macrolol. Sci. B., 20, 111–131.

    Google Scholar 

  10. Baughman, R. H., & Chance, R. R. (1976). Comments on the optical properties of fully conjugated polymers: Analogy between polyenes and polydiacetylenes. Journal of Polymer Science Polymer Physics Edition, 14, 2037–2045.

    CAS  Google Scholar 

  11. Olmsted, J., & Strand, M. (1983). Fluorescence of polymerized diacetylene bilayer films. Journal of Physical Chemistry, 87, 4790–4792.

    CAS  Google Scholar 

  12. Carpick, R. W., Sasaki, D. Y., Marcus, M. S., Eriksson, M. A., & Burns, A. R. (2004). Polydiacetylene films: a review of recent investigations into chromogenic transitions and nanomechanical properties. Journal of Physics: Condensed Matter, 16, 679.

    Google Scholar 

  13. Sun, X., Chen, T., Huang, S., Li, L., & Peng, H. (2010). Chromatic polydiacetylene with novel sensitivity. Chemical Society Reviews, 39, 4244–4257.

    CAS  PubMed  Google Scholar 

  14. Filhol, J.-S., Deschamps, J., Dutremez, S. G., Boury, B., Barisien, T., Legrand, L., & Schott, M. (2009). Polymorphs and colors of polydiacetylenes: a first principles study. Journal of the American Chemical Society, 131, 6976–6988.

    CAS  PubMed  Google Scholar 

  15. Lifshitz, Y., Upcher, A., Shusterman, O., Horovitz, B., Berman, A., & Golan, Y. (2010). Phase transition kinetics in Langmuir and spin-coated polydiacetylene films. Physical Chemistry Chemical Physics: PCCP, 12, 713–722.

    CAS  PubMed  Google Scholar 

  16. Charych, D., Nagy, J., Spevak, W., & Bednarski, M. (1993). Direct colorimetric detection of a receptor-ligand interaction by a polymerized bilayer assembly. Science, 261, 585–588.

    CAS  PubMed  Google Scholar 

  17. Reichert, A., Nagy, J. O., Spevak, W., & Charych, D. (1995). Polydiacetylene liposomes functionalized with sialic acid bind and colorimetrically detect influenza virus. Journal of the American Chemical Society, 117, 829–830.

    CAS  Google Scholar 

  18. Ma, Z., Li, J., Liu, M., Cao, J., Zou, Z., Tu, J., & Jiang, L. (1998). Colorimetric detection of Escherichia coli by polydiacetylene vesicles functionalized with glycolipid. Journal of the American Chemical Society, 120, 12678–12679.

    CAS  Google Scholar 

  19. Boullanger, P., Lafont, D., Bouchu, M.-N., Jiang, L., Liu, T., Lu, W., Guo, C. X., & Li, J. (2008). The use of glycolipids inserted in color-changeable polydiacetylene vesicles, as targets for biological recognition. Comptes Rendus Chimie, 11, 43–60.

    CAS  Google Scholar 

  20. Lee, S., Kim, J.-Y., Chen, X., & Yoon, J. (2016). Recent progress in stimuli-induced polydiacetylenes for sensing temperature, chemical and biological targets. Chemical Communications, 52, 9178–9196.

    CAS  PubMed  Google Scholar 

  21. Jung, Y. K., Kim, T. W., Park, H. G., & Soh, H. T. (2010). Specific colorimetric detection of proteins using bidentate aptamer-conjugated polydiacetylene (PDA) liposomes. Advanced Functional Materials, 20, 3092–3097.

    CAS  Google Scholar 

  22. Kang, D. H., Jung, H.-S., Ahn, N., Lee, J., Seo, S., Suh, K.-Y., Kim, J., & Kim, K. (2012). Biomimetic detection of aminoglycosidic antibiotics using polydiacetylene–phospholipids supramolecules. Chemical Communications, 48, 5313–5315.

    CAS  PubMed  Google Scholar 

  23. Jeon, H., Lee, S., Li, Y., Park, S., & Yoon, J. (2012). Conjugated polydiacetylenes bearing quaternary ammonium groups as a dual colorimetric and fluorescent sensor for ATP. Journal of Materials Chemistry, 22, 3795–3799.

    CAS  Google Scholar 

  24. Kolusheva, S., Wachtel, E., & Jelinek, R. (2003). Biomimetic lipid/polymer colorimetric membranes: molecular and cooperative properties. Journal of Lipid Research, 44, 65–71.

    CAS  PubMed  Google Scholar 

  25. Pevzner, A., Kolusheva, S., Orynbayeva, Z., & Jelinek, R. (2008). Giant chromatic lipid/polydiacetylene vesicles for detection and visualization of membrane interactions. Advanced Functional Materials, 18, 242–247.

    CAS  Google Scholar 

  26. Chance, R. R., Baughman, R. H., Müller, H., & Eckhardt, C. J. (1977). Thermochromism in a polydiacetylene crystal. The Journal of Chemical Physics, 67, 3616–3618.

    CAS  Google Scholar 

  27. Chen, X., & Yoon, J. (2011). A thermally reversible temperature sensor based on polydiacetylene: Synthesis and thermochromic properties. Dyes and Pigments, 89, 194–198.

    CAS  Google Scholar 

  28. Xu, Y., Li, J., Hu, W., Zou, G., & Zhang, Q. (2013). Thermochromism and supramolecular chirality of the coumarin-substituted polydiacetylene LB films. Journal of Colloid and Interface Science, 400, 116–122.

    CAS  PubMed  Google Scholar 

  29. Song, J., Cheng, Q., Kopta, S., & Stevens, R. C. (2001). Modulating artificial membrane morphology: ph-induced chromatic transition and nanostructural transformation of a bolaamphiphilic conjugated polymer from blue helical ribbons to red nanofibers. Journal of the American Chemical Society, 123, 3205–3213.

    CAS  PubMed  Google Scholar 

  30. Kew, S. J., & Hall, E. A. H. (2006). pH response of carboxy-terminated colorimetric polydiacetylene vesicles. Analytical Chemistry, 78, 2231–2238.

    CAS  PubMed  Google Scholar 

  31. Lee, J., Kim, H.-J., & Kim, J. (2008). Polydiacetylene liposome arrays for selective potassium detection. Journal of the American Chemical Society, 130, 5010–5011.

    CAS  PubMed  Google Scholar 

  32. Lee, J., Jun, H., & Kim, J. (2009). Polydiacetylene-liposome microarrays for selective and sensitive mercury(ii) detection. Advanced Materials, 21, 3674–3677.

    CAS  Google Scholar 

  33. Wang, M., Wang, F., Wang, Y., Zhang, W., & Chen, X. (2015). Polydiacetylene-based sensor for highly sensitive and selective Pb2+ detection. Dyes and Pigments, 120, 307–313.

    CAS  Google Scholar 

  34. Park, D.-H., Heo, J.-M., Jeong, W., Yoo, Y. H., Park, B. J., & Kim, J.-M. (2018). Smartphone-based voc sensor using colorimetric polydiacetylenes. ACS Applied Materials & Interfaces, 10, 5014–5021.

    CAS  Google Scholar 

  35. Lee, S. S., Chae, E. H., Ahn, D. J., Ahn, K. H., & Yeo, J.-K. (2007). Shear-induced color transition of PDA (polydiacetylene) liposome in polymeric solutions. Korea-Aust. Rheol. J., 19, 43–47.

    Google Scholar 

  36. Tjandra, A. D., Weston, M., Tang, J., Kuchel, R. P., & Chandrawati, R. (2021). Solvent injection for polydiacetylene particle synthesis – effects of varying solvent, injection rate, monomers and needle size on polydiacetylene properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 21, 126497.

    Google Scholar 

  37. Tang, J., Weston, M., Kuchel, R. P., Lisi, F., Liang, K., & Chandrawati, R. (2020). Fabrication of polydiacetylene particles using a solvent injection method. Mater. Adv., 1, 1745–1752.

    CAS  Google Scholar 

  38. Polacchi, L., Brosseau, A., Métivier, R., & Allain, C. (2019). Mechano-responsive fluorescent polydiacetylene-based materials: Towards quantification of shearing stress at the nanoscale. Chemical Communications, 55, 14566–14569.

    CAS  PubMed  Google Scholar 

  39. Polacchi, L., Brosseau, A., Guillot, R., Métivier, R., & Allain, C. (2021). Enhanced mechano-responsive fluorescence in polydiacetylene thin films through functionalization with tetrazine dyes: Photopolymerization, energy transfer and AFM coupled to fluorescence microscopy studies. Physical Chemistry Chemical Physics: PCCP, 23, 25188–25199.

    CAS  PubMed  Google Scholar 

  40. Reppy, M. A. (2008). Enhancing the emission of polydiacetylene sensing materials through fluorophore addition and energy transfer. Journal of Fluorescence, 18, 461–471.

    CAS  PubMed  Google Scholar 

  41. Li, X., McCarroll, M., & Kohli, P. (2006). Modulating fluorescence resonance energy transfer in conjugated liposomes. Langmuir, 22, 8615–8617.

    CAS  PubMed  Google Scholar 

  42. Barisien, T., Fave, J.-L., Hameau, S., Legrand, L., Schott, M., Malinge, J., Clavier, G., Audebert, P., & Allain, C. (2013). Reversible quenching of a chromophore luminescence by color transition of a polydiacetylene. ACS Applied Materials & Interfaces, 5, 10836–10841.

    CAS  Google Scholar 

  43. Katagi, H., Kasai, H., Okada, S., Oikawa, H., Komatsu, K., Matsuda, H., Liu, Z., & Nakanishi, H. (1996). Size control of polydiacetylene microcrystals. Japanese Journal of Applied Physics, 35, L1364.

    CAS  Google Scholar 

  44. Katagi, H., Kasai, H., Okada, S., Oikawa, H., Matsuda, H., & Nakanishi, H. (1997). Preparation and characterization of poly-diacetylene microcrystals. J Macromol Sci A, 34, 2013–2024.

    Google Scholar 

  45. Kasai, H., Nalwa, H. S., Oikawa, H., Okada, S., Matsuda, H., Minami, N., Kakuta, A., Ono, K., Mukoh, A., & Nakanishi, H. (1992). A Novel preparation method of organic microcrystals. Japanese Journal of Applied Physics, 31, L1132.

    CAS  Google Scholar 

  46. Tahir, M. N., Abdulhamied, E., Nyayachavadi, A., Selivanova, M., Eichhorn, S. H., & Rondeau-Gagné, S. (2019). Topochemical polymerization of a nematic tetraazaporphyrin derivative to generate soluble polydiacetylene nanowires. Langmuir, 35, 15158–15167.

    CAS  PubMed  Google Scholar 

  47. Park, S., Lee, C. W., & Kim, J.-M. (2018). Highly conductive PEDOT:PSS patterns based on photo-crosslinkable and water-soluble diacetylene diol additives. Organic Electronics, 58, 1–5.

    CAS  Google Scholar 

  48. Reppy, M. A., & Pindzola, B. A. (2007). Biosensing with polydiacetylene materials: structures, optical properties and applications. Chemical Communications, 42, 4317–4338.

    Google Scholar 

  49. Han, N., Woo, H. J., Kim, S. E., Jung, S., Shin, M. J., Kim, M., & Shin, J. S. (2017). Systemized organic functional group controls in polydiacetylenes and their effects on color changes. Journal of Applied Polymer Science, 134, 45011.

    Google Scholar 

  50. Ahn, D. J., Chae, E.-H., Lee, G. S., Shim, H.-Y., Chang, T.-E., Ahn, K.-D., & Kim, J.-M. (2003). Colorimetric Reversibility of Polydiacetylene Supramolecules Having Enhanced Hydrogen-Bonding under Thermal and pH Stimuli. Journal of the American Chemical Society, 125, 8976–8977.

    CAS  PubMed  Google Scholar 

  51. Deckert, A. A., Fallon, L., Kiernan, L., Cashin, C., Perrone, A., & Encalarde, T. (1994). Kinetics of the reversible thermochromism in langmuir-blodgett films of cd2+ salts of polydiacetylenes studied using UV-Vis spectroscopy. Langmuir, 10, 1948–1954.

    CAS  Google Scholar 

  52. Kamphan, A., Traiphol, N., & Traiphol, R. (2016). Versatile route to prepare reversible thermochromic polydiacetylene nanocomposite using low molecular weight poly(vinylpyrrolidone). Colloids and Surfaces A: Physicochemical and Engineering Aspects, 497, 370–377.

    CAS  Google Scholar 

  53. Mapazi, O., Matabola, P. K., Moutloali, R. M., & Ngila, C. J. (2017). A urea-modified polydiacetylene-based high temperature reversible thermochromic sensor: Characterisation and evaluation of properties as a function of temperature. Sensors and Actuators B: Chemical, 252, 671–679.

    CAS  Google Scholar 

  54. Ma, G., Müller, A. M., Bardeen, C. J., & Cheng, Q. (2006). Self-assembly combined with photopolymerization for the fabrication of fluorescence “turn-on” vesicle sensors with reversible “on–off” switching properties. Advanced Materials, 18, 55–60.

    CAS  Google Scholar 

  55. Tomioka, Y., Tanaka, N., & Imazeki, S. (1989). Surface-pressure-induced reversible color change of a polydiacetylene monolayer at a gas–water interface. The Journal of Chemical Physics, 91, 5694–5700.

    CAS  Google Scholar 

Download references

Acknowledgements

This project has received funding from the H2020-EU.1.1. research and innovation programme(s)–ERC-2016-STG under grant agreement No 715757.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: LP, AB, RM and CA (equal); data curation: LP (lead), AB (supporting), and AS (supporting); investigation: LP (lead) and AS (supporting); methodology: LP (lead), AB, RM and CA (supporting); project administration: LP (lead) and AB (supporting); resources: AB, RM and CA (equal); software: RM, (lead) and AB (equal); supervision: CA and RM (equal); validation: LP (lead), AB, RM and CA (equal); visualization: LP; writing—original draft: LP; writing—review and editing: CA, RM and AB (supporting).

Corresponding authors

Correspondence to Rémi Métivier or Clémence Allain.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1276 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polacchi, L., Brosseau, A., Smith, A. et al. Polymerization of tetrazine-substituted diacetylenes as aggregates in suspension. Photochem Photobiol Sci 22, 2121–2132 (2023). https://doi.org/10.1007/s43630-023-00434-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-023-00434-0

Navigation