Skip to main content
Log in

Physiological responses of the cyanobacterium Synechocystis sp. PCC 6803 under rhythmic light variations

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Cyanobacteria are challenged by daily fluctuations of light intensities and photoperiod in their natural habitats, which affect the physiology and fitness of cyanobacteria. Circadian rhythms (CRs), an important endogenous process found in all organisms including cyanobacteria, control their physiological activities and helps in coping with 24-h light/dark (LD) cycle. In cyanobacteria, physiological responses under rhythmic ultraviolet radiation (UVR) are poorly studied. Therefore, we studied the changes in photosynthetic pigments, and physiological parameters of Synechocystis sp. PCC 6803 under UVR and photosynthetically active radiation (PAR) of light/dark (LD) oscillations having the combinations of 0, 4:20, 8:16, 12:12, 16:8, 20:4, and 24:24 h. The LD 16:8 enhanced the growth, pigments, proteins, photosynthetic efficiency, and physiology of Synechocystis sp. PCC6803. Continuous light (LL 24) of UVR and PAR exerted negative impact on the photosynthetic pigments, and chlorophyll fluorescence. Significant increase in reactive oxygen species (ROS) resulted in loss of plasma membrane integrity followed by decreased viability of cells. The dark phase played a significant role in Synechocystis to withstand the LL 24 under PAR and UVR. This study offers detailed understanding of the physiological responses of the cyanobacterium to changing light environment.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data will be made avaialable from the authors on request.

References

  1. Iwasaki, H., & Kondo, T. (2000). The current state and problems of circadian clock studies in cyanobacteria. Plant and Cell Physiology, 41(9), 1013–1020. https://doi.org/10.1093/pcp/pcd024

    Article  CAS  PubMed  Google Scholar 

  2. Reppert, S. M., & Weaver, D. R. (2002). Coordination of circadian timing in mammals. Nature, 418(6901), 935–941. https://doi.org/10.1038/nature00965

    Article  CAS  PubMed  Google Scholar 

  3. Dibner, C., Schibler, U., & Albrecht, U. (2010). The mammalian circadian timing system: Organization and coordination of central and peripheral clocks. Annual Review of Physiology, 72, 517–549. https://doi.org/10.1146/annurev-physiol-021909-135821

    Article  CAS  PubMed  Google Scholar 

  4. Cohen, S. E., & Golden, S. S. (2015). Circadian rhythms in cyanobacteria. Microbiology and Molecular Biology Reviews, 79(4), 373–385. https://doi.org/10.1128/MMBR.00036-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Liu, Y., Tsinoremas, N. F., Johnson, C. H., Lebedeva, N. V., Golden, S. S., Ishiura, M., & Kondo, T. (1995). Circadian orchestration of gene expression in cyanobacteria. Genes and Development, 9(12), 1469–1478. https://doi.org/10.1101/gad.9.12.1469

    Article  CAS  PubMed  Google Scholar 

  6. Mori, T., Binder, B., & Johnson, C. H. (1996). Circadian gating of cell division in cyanobacteria growing with average doubling times of less than 24 hours. Proceeding of the National Academy of Sciences USA, 93(19), 10183–10188. https://doi.org/10.1073/pnas.93.19.10183

    Article  CAS  Google Scholar 

  7. Smith, R. M., & Williams, S. B. (2006). Circadian rhythms in gene transcription imparted by chromosome compaction in the cyanobacterium Synechococcus elongatus. Proceeding of the National Academy of Sciences USA, 103(22), 8564–8569. https://doi.org/10.1073/pnas.0508696103

    Article  CAS  Google Scholar 

  8. Diamond, S., Jun, D., Rubin, B. E., & Golden, S. S. (2015). The circadian oscillator in Synechococcus elongatus controls metabolite partitioning during diurnal growth. Proceeding of the National Academy of Sciences USA, 112(15), E1916–E1925. https://doi.org/10.1073/pnas.1504576112

    Article  CAS  Google Scholar 

  9. Kumar, D., Kannaujiya, V. K., Pathak, J., Sundaram, S., & Sinha, R. P. (2018). Composition and functional property of photosynthetic pigments under circadian rhythm in the cyanobacterium Spirulina platensis. Protoplasma, 255(3), 885–898. https://doi.org/10.1007/s00709-017-1195-8

    Article  CAS  PubMed  Google Scholar 

  10. Kono, M., & Terashima, I. (2014). Long-term and short-term responses of the photosynthetic electron transport to fluctuating light. Journal of Photochemistry Photobiology B: Biology, 137, 89–99. https://doi.org/10.1016/j.jphotobiol.2014.02.016

    Article  CAS  PubMed  Google Scholar 

  11. Cassier-Chauvat, C., Veaudor, T., & Chauvat, F. (2016). Comparative genomics of DNA recombination and repair in cyanobacteria: Biotechnological implications. Frontiers in Microbiology, 7, 1809. https://doi.org/10.3389/fmicb.2016.01809

    Article  PubMed  PubMed Central  Google Scholar 

  12. Häder, D.-P., Williamson, C. E., Wängberg, S. Å., Rautio, M., Rose, K. C., Gao, K., Helbling, E. W., Sinha, R. P., & Worrest, R. (2015). Effects of UV radiation on aquatic ecosystems and interactions with other environmental factors. Photochemistry and Photobiological Sciences, 14(1), 108–126. https://doi.org/10.1039/c4pp90035a

    Article  CAS  Google Scholar 

  13. Sancar, A. (2016). Mechanisms of DNA repair by photolyase and excision nuclease (Nobel Lecture). Angewandte Chemie International Edition, 55(30), 8502–8527. https://doi.org/10.1002/anie.201601524

    Article  CAS  PubMed  Google Scholar 

  14. Singh, S. P., Häder, D.-P., & Sinha, R. P. (2010). Cyanobacteria and ultraviolet radiation (UVR) stress: Mitigation strategies. Ageing Research Reviews, 9(2), 79–90. https://doi.org/10.1016/j.arr.2009.05.004

    Article  CAS  PubMed  Google Scholar 

  15. Pathak, J., Rajneesh., Singh, P. R., Häder, D.-P., & Sinha, R. P. (2019). UV-induced DNA damage and repair: A cyanobacterial perspective. Plant Gene, 19, 100194. https://doi.org/10.1016/j.plgene.2019.100194

    Article  CAS  Google Scholar 

  16. Rajneesh., Pathak, J., Häder, D.-P., & Sinha, R. P. (2019). Impacts of ultraviolet radiation on certain physiological and biochemical processes in cyanobacteria inhabiting diverse habitats. Environmental and Experimental Botany, 161, 375–387. https://doi.org/10.1016/j.envexpbot.2018.10.037

    Article  CAS  Google Scholar 

  17. Noyma, N. P., Silva, T. P., Chiarini-Garcia, H., Amado, A. M., Roland, F., & Melo, R. C. (2015). Potential effects of UV radiation on photosynthetic structures of the bloom-forming cyanobacterium Cylindrospermopsis raciborskii CYRF-01. Frontier in Microbiology, 6, 1202. https://doi.org/10.3389/fmicb.2015.01202

    Article  Google Scholar 

  18. Lesser, M. P. (2008). Effects of ultraviolet radiation on productivity and nitrogen fixation in the cyanobacterium, Anabaena sp. (Newton’s strain). Hydrobiologia, 598(1), 1–9. https://doi.org/10.1007/s10750-007-9126-x

    Article  CAS  Google Scholar 

  19. Singh, J. S., Kumar, A., Rai, A. N., & Singh, D. P. (2016). Cyanobacteria: A precious bio-resource in agriculture, ecosystem, and environmental sustainability. Frontiers in Microbiology, 7, 529. https://doi.org/10.3389/fmicb.2016.00529

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ahmed, H., Pathak, J., Sonkar, P. K., Ganesan, V., Häder, D.-P., & Sinha, R. P. (2021). Responses of a hot spring cyanobacterium under ultraviolet and photosynthetically active radiation: photosynthetic performance, antioxidative enzymes, mycosporine-like amino acid profiling and its antioxidative potentials. 3 Biotech, 11(1), 10. https://doi.org/10.1007/s13205-020-02562-1

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ogawa, T., Misumi, M., & Sonoike, K. (2017). Estimation of photosynthesis in cyanobacteria by pulse-amplitude modulation chlorophyll fluorescence: Problems and solutions. Photosynthesis Research, 133, 63–73. https://doi.org/10.1007/s11120-017-0367-x

    Article  CAS  PubMed  Google Scholar 

  22. Tan, C. H., Show, P. L., Chang, J. S., Ling, T. C., & Lan, J. C. W. (2015). Novel approaches of producing bioenergies from microalgae: A recent review. Biotechnology Advances, 33(6), 1219–1227. https://doi.org/10.1016/j.biotechadv.2015.02.013

    Article  CAS  PubMed  Google Scholar 

  23. Sarsekeyeva, F., Zayadan, B. K., Usserbaeva, A., Bedbenov, V. S., Sinetova, M. A., & Los, D. A. (2015). Cyanofuels: Biofuels from cyanobacteria. Reality and perspectives. Photosynthesis Research, 125, 329–340. https://doi.org/10.1007/s11120-015-0103-3

    Article  CAS  PubMed  Google Scholar 

  24. Singh, S. P., Pathak, J., & Sinha, R. P. (2017). Cyanobacterial factories for the production of green energy and value-added products: An integrated approach for economic viability. Renewable and Sustainable Energy Reviews, 69, 578–595. https://doi.org/10.1016/j.rser.2016.11.110

    Article  CAS  Google Scholar 

  25. Niyogi, K. K. (1999). Photoprotection revisited: Genetic and molecular approaches. Annual Review of Plant Biology, 50(1), 333–359. https://doi.org/10.1146/annurev.arplant.50.1.333

    Article  CAS  Google Scholar 

  26. Rippka, R., Deruelles, J., Waterbury, J. B., Herdman, M., & Stanier, R. Y. (1979). Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Microbiology, 111(1), 1–61. https://doi.org/10.1099/00221287-111-1-1

    Article  Google Scholar 

  27. Zavřel, T., Sinetova, M. A., & Červený, J. (2015). Measurement of chlorophyll a and carotenoids concentration in cyanobacteria. Bio-Protocol, 5(9), e1467–e1467. https://doi.org/10.21769/BioProtoc.1467

    Article  Google Scholar 

  28. Schwarzkopf, M., Yoo, Y. C., Hückelhoven, R., Park, Y. M., & Proels, R. K. (2014). Cyanobacterial phytochrome2 regulates the heterotrophic metabolism and has a function in the heat and high-light stress response. Plant Physiology, 164(4), 2157–2166. https://doi.org/10.1104/pp.113.233270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193, 265–275.

    Article  CAS  PubMed  Google Scholar 

  30. Singh, S. P., Rastogi, R. P., Sinha, R. P., & Häder, D.-P. (2013). Photosynthetic performance of Anabaena variabilis PCC 7937 under simulated solar radiation. Photosynthetica, 51(2), 259–266. https://doi.org/10.1007/s11099-013-0012-7

    Article  CAS  Google Scholar 

  31. Kumar, V., Mondal, S., Gupta, A., Maurya, P. K., Sinha, R. P., Häder, D.-P., & Singh, S. P. (2021). Light-dependent impact of salinity on the ecophysiology of Synechococcus elongatus PCC 7942: Genetic and comparative protein structure analyses of UV-absorbing mycosporine-like amino acids (MAAs) biosynthesis. Environmental and Experimental Botany, 191, 104620. https://doi.org/10.1016/j.envexpbot.2021.104620

    Article  CAS  Google Scholar 

  32. Genty, B., Briantais, J. M., & Baker, N. R. (1989). The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta, 990(1), 87–92. https://doi.org/10.1016/S0304-4165(89)80016-9

    Article  CAS  Google Scholar 

  33. He, Y. Y., & Häder, D.-P. (2002). UV-B-induced formation of reactive oxygen species and oxidative damage of the cyanobacterium Anabaena sp.: protective effects of ascorbic acid and N-acetyl-L-cysteine. Journal of Photochemistry and Photobiology B: Biology., 66(2), 115–124. https://doi.org/10.1016/S1011-1344(02)00231-2

    Article  CAS  PubMed  Google Scholar 

  34. Rastogi, R. P., Singh, S. P., Häder, D.-P., & Sinha, R. P. (2010). Detection of reactive oxygen species (ROS) by the oxidant-sensing probe 2′, 7′-dichlorodihydrofluorescein diacetate in the cyanobacterium Anabaena variabilis PCC 7937. Biochemical and Biophysical Research Communication, 397(3), 603–607. https://doi.org/10.1016/j.bbrc.2010.06.006

    Article  CAS  Google Scholar 

  35. Rajneesh., Pathak, J., Chatterjee, A., Singh, S. P., & Sinha, R. P. (2017). Detection of reactive oxygen species (ROS) in cyanobacteria using the oxidant-sensing probe 2’, 7’-Dichlorodihydrofluorescein diacetate (DCFH-DA). Bio-protocol, 7(17), 2545–2545. https://doi.org/10.21769/BioProtoc.2545

    Article  Google Scholar 

  36. Chen, Z., Tian, Y., Zhu, C., Liu, B., Zhang, Y., Lu, Z., Zhou, Q., & Wu, Z. (2018). Sensitive detection of oxidative DNA damage in cyanobacterial cells using supercoiling-sensitive quantitative PCR. Chemosphere, 211, 164–172. https://doi.org/10.1016/j.chemosphere.2018.06.154

    Article  CAS  PubMed  Google Scholar 

  37. Bethke, P. C., Lonsdale, J. E., Fath, A., & Jones, R. L. (1999). Hormonally regulated programmed cell death in barley aleurone cells. The Plant Cell, 11(6), 1033–1045. https://doi.org/10.1105/tpc.11.6.1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Swapnil, P., Yadav, A. K., Srivastav, S., Sharma, N. K., Srikrishna, S., & Rai, A. K. (2017). Biphasic ROS accumulation and programmed cell death in a cyanobacterium exposed to salinity (NaCl and Na2SO4). Algal Research, 23, 88–95. https://doi.org/10.1016/j.algal.2017.01.014

    Article  Google Scholar 

  39. Giannopolitis, C. N., & Ries, S. K. (1977). Superoxide dismutases: I. Occurrence in higher plants. Plant Physiology, 59(2), 309–314. https://doi.org/10.1104/pp.59.2.309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Aebi, H. (1984). Catalase in vitro. Methods in Enzymology, 105, 121–126. https://doi.org/10.1016/S0076-6879(84)05016-3

    Article  CAS  PubMed  Google Scholar 

  41. Steiger, S., Schäfer, L., & Sandmann, G. (1999). High-light-dependent upregulation of carotenoids and their antioxidative properties in the cyanobacterium Synechocystis PCC 6803. Journal Photochemistry and Photobiology B: Biology, 52(1–3), 14–18. https://doi.org/10.1016/S1011-1344(99)00094-9

    Article  CAS  Google Scholar 

  42. Latifi, A., Ruiz, M., & Zhang, C. C. (2009). Oxidative stress in cyanobacteria. FEMS Microbiology Reviews, 33(2), 258–278. https://doi.org/10.1111/j.1574-6976.2008.00134.x

    Article  CAS  PubMed  Google Scholar 

  43. Hargreaves, A., Taiwo, F. A., Duggan, O., Kirk, S. H., & Ahmad, S. I. (2007). Near-ultraviolet photolysis of β-phenylpyruvic acid generates free radicals and results in DNA damage. Journal of Photochemistry and Photobiology B: Biology, 89(2–3), 110–116. https://doi.org/10.1016/j.jphotobiol.2007.09.007

    Article  CAS  PubMed  Google Scholar 

  44. Gao, Y., Xiong, W., Li, X. B., Gao, C. F., Zhang, Y. L., Li, H., & Wu, Q. Y. (2009). Identification of the proteomic changes in Synechocystis sp. PCC 6803 following prolonged UV-B irradiation. Journal of Experimental Botany, 60(4), 1141–1154. https://doi.org/10.1093/jxb/ern356

    Article  CAS  PubMed  Google Scholar 

  45. Rinalducci, S., Hideg, E., Vass, I., & Zolla, L. (2006). Effect of moderate UV-B irradiation on Synechocystis PCC 6803 biliproteins. Biochemical and Biophysical Research Communications, 341(4), 1105–1112. https://doi.org/10.1016/j.bbrc.2006.01.070

    Article  CAS  PubMed  Google Scholar 

  46. Kannaujiya, V. K., & Sinha, R. P. (2017). Impacts of diurnal variation of ultraviolet-B and photosynthetically active radiation on phycobiliproteins of the hot-spring cyanobacterium Nostoc sp. strain HKAR-2. Protoplasma, 254(1), 423–433. https://doi.org/10.1007/s00709-016-0964-0

    Article  CAS  PubMed  Google Scholar 

  47. Sinha, R. P., & Häder, D.-P. (2003). Biochemistry of phycobilisome disassembly by ultraviolet-B radiation in cyanobacteria. Recent Research Development in Biochemistry, 4, 945–955. https://doi.org/10.1016/j.jphotobiol.2014.09.020

    Article  CAS  Google Scholar 

  48. Zakar, T., Laczko-Dobos, H., Toth, T. N., & Gombos, Z. (2016). Carotenoids assist in cyanobacterial photosystem II assembly and function. Frontier in Plant Science, 7, 295. https://doi.org/10.3389/fpls.2016.00295

    Article  Google Scholar 

  49. Khanthasuwan, S., Incharoensakdi, A., & Jantaro, S. (2019). Response of Synechocystis sp. PCC 6803 to UV radiations by alteration of polyamines associated with thylakoid membrane proteins. World Journal of Microbiology and Biotechnology, 35, 1–9. https://doi.org/10.1007/s11274-018-2580-y

    Article  CAS  Google Scholar 

  50. Rastogi, R. P., Singh, S. P., Incharoensakdi, A., Häder, D.-P., & Sinha, R. P. (2014). Ultraviolet radiation-induced generation of reactive oxygen species, DNA damage and induction of UV-absorbing compounds in the cyanobacterium Rivularia sp. HKAR-4. South African Journal of Botany, 90, 163–169. https://doi.org/10.1016/j.sajb.2013.11.006

    Article  CAS  Google Scholar 

  51. Moon, Y. J., Kim, S. I., & Chung, Y. H. (2012). Sensing and responding to UV-A in cyanobacteria. International Journal of Molecular Sciences., 13(12), 16303–16332. https://doi.org/10.3390/ijms131216303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Schmitz, O., Katayama, M., Williams, S. B., Kondo, T., & Golden, S. S. (2000). CikA, a bacteriophytochrome that resets the cyanobacterial circadian clock. Science, 289(5480), 765–768. https://doi.org/10.1126/science.289.5480.765

    Article  CAS  PubMed  Google Scholar 

  53. Katayama, M., Kondo, T., Xiong, J., & Golden, S. S. (2003). ldpA encodes an iron-sulfur protein involved in light-dependent modulation of the circadian period in the cyanobacterium Synechococcus elongatus PCC 7942. Journal of Bacteriology, 185(4), 1415–1422. https://doi.org/10.1128/JB.185.4.1415-1422.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Prashant R. Singh (09/013(0795)/2018-EMR-I) is thankful to the Council of Scientific and Industrial Research, New Delhi, India for the financial support in the form of junior and senior research fellowships. We thank Dr. Vipin Kumar Singh for his valuable suggestions. The authors are thankful to the Head and Programme Coordinator (CAS), Dept. of Botany and Interdisciplinary School of Life Sciences (ISLS), Banaras Hindu University, Varanasi, India, for providing instrumentation facilities. Incentive grant received from IoE (Scheme No. 6031), Banaras Hindu University, Varanasi, India, to Rajeshwar P. Sinha is highly acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

PRS: performed the experiments, analyzed the experimental results, statistical analysis and wrote the manuscript; JP: helped in writing the paper, data analysis and critically reviewed the manuscript; Rajneesh and HA: helped in the experimental work; DPH: suggested the research idea and reviewed the manuscript; RPS: designed the experiments, provided laboratory facilities, and reviewed the manuscript. All the authors accepted the final version of our manuscript.

Corresponding author

Correspondence to Rajeshwar P. Sinha.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, P.R., Pathak, J., Rajneesh et al. Physiological responses of the cyanobacterium Synechocystis sp. PCC 6803 under rhythmic light variations. Photochem Photobiol Sci 22, 2055–2069 (2023). https://doi.org/10.1007/s43630-023-00429-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-023-00429-x

Keywords

Navigation