Skip to main content

Advertisement

Log in

The synthesis of novel water-soluble zinc (II) phthalocyanine based photosensitizers and exploring of photodynamic therapy activities on the PC3 cancer cell line

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

In this study, Schiff base substituted phthalocyanine complexes (Zn1c, Zn2c) and their quaternized derivatives (Q-Zn1c, Q-Zn2c) were synthesized for the first time. Their structures have been characterized by FT-IR, 1H-NMR, UV–Vis, mass spectrometry and elemental analysis as well as. The photophysicochemical properties (fluorescence, singlet oxygen and photodegradation quantum yield) of these novel complexes were investigated in dimethylsulfoxide (DMSO) for both non-ionic and quaternized cationic phthalocyanine complexes and in aqueous solution for quaternized cationic phthalocyanine complexes. Water soluble cationic phthalocyanine compounds gave good singlet oxygen quantum yield (0.65 for Q-Zn1c, 0.66 for Q-Zn2c in DMSO; 0.65 for Q-Zn2c in aqueous solution). The binding of Q-Zn1c and Q-Zn2c to BSA/DNA was studied by using UV–Vis and fluorescence spectroscopy and these. Studies indicate that the mechanism of BSA quenching by quaternized zinc(II) phthalocyanines was static quenching. Quaternized zinc(II) phthalocyanines interacted with ct-DNA by intercalation. Quaternized zinc(II) phthalocyanines caused a decrease in cell viability and triggered apoptotic cell death after PDT was applied at a concentration that did not have a toxic effect on their own. Q-Zn1c and Q-Zn2c mediated PDT reduced the activity of SOD, CAT, GSH while increased MDA level in the prostate cancer cells. Furthermore, expression of apoptotic proteins after PDT was examined. The results revealed that the synthesized water soluble quaternized zinc(II) phthalocyanine complexes (Q-Zn1c and Q-Zn2c) are promising potential photosensitizers for PDT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

No data was used for the research described in the article.

References

  1. Dai, J., Wu, X., Ding, S., Lou, X., Xia, F., Wang, S., & Hong, Y. (2020). Aggregation-induced emission photosensitizers: from molecular design to photodynamic therapy. Journal of Medicinal Chemistry, 63, 1996–2012. https://doi.org/10.1021/acs.jmedchem.9b02014

    Article  CAS  PubMed  Google Scholar 

  2. Nackiewicz, J., Kliber-Jasik, M., & Skonieczna, M. (2019). A novel pro-apoptotic role of zinc octacarboxyphthalocyanine in melanoma me45 cancer cell’s photodynamic therapy (PDT). Journal of Photochemistry and Photobiology, B: Biology, 190, 146–153. https://doi.org/10.1016/j.jphotobiol.2018.12.002

    Article  CAS  PubMed  Google Scholar 

  3. Aksel, M., Bozkurt-Girit, O., & Bilgin, M. D. (2020). Pheophorbide a-mediated sonodynamic, photodynamic and sonophotodynamic therapies against prostate cancer. Photodiagnosis and Photodynamic Therapy., 31, 101909. https://doi.org/10.1016/j.pdpdt.2020.101909

    Article  CAS  PubMed  Google Scholar 

  4. Yano, T., & Wang, K. K. (2020). Photodynamic therapy for gastrointestinal cancer. Photochemistry and Photobiology, 96, 517–523. https://doi.org/10.1111/php.13206

    Article  CAS  PubMed  Google Scholar 

  5. Matshitse, R., Tshiwawa, T., Managa, M., Nwaji, N., Lobb, K., & Nyokong, T. (2020). Theoretical and photodynamic therapy characteristics of heteroatom doped detonation nanodiamonds linked to asymmetrical phthalocyanine for eradication of breast cancer cells. Journal of Luminescence., 227, 117465. https://doi.org/10.1016/j.jlumin.2020.117465

    Article  CAS  Google Scholar 

  6. Crous, A., Dhilip Kumar, S. S., & Abrahamse, H. (2019). Effect of dose responses of hydrophilic aluminium (III) phthalocyanine chloride tetrasulphonate based photosensitizer on lung cancer cells. Journal of Photochemistry and Photobiology B: Biology, 194, 96–106. https://doi.org/10.1016/j.jphotobiol.2019.03.018

    Article  CAS  PubMed  Google Scholar 

  7. Correia, J. H., Rodrigues, J. A., Pimenta, S., Dong, T., & Yang, Z. (2021). Photodynamic therapy review: principles, photosensitizers, applications, and future directions. Pharmaceutics, 13, 1332. https://doi.org/10.3390/pharmaceutics13091332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jia, X., Yang, F. F., Li, J., Liu, J. Y., & Xue, J. P. (2013). Synthesis and in vitro photodynamic activity of oligomeric ethylene glycol-quinoline substituted zinc(II) phthalocyanine derivatives. Journal of Medicinal Chemistry, 56, 5797–5805. https://doi.org/10.1021/jm400722d

    Article  CAS  PubMed  Google Scholar 

  9. Hossain, A. M. S., Mendez-Arriaga, J. M., Xia, C., Xie, J., & Gomez-Ruiz, S. (2022). Metal complexes with ONS donor schiff bases. A review. Polyhedron, 217, 115692. https://doi.org/10.1016/j.poly.2022.115692

    Article  CAS  Google Scholar 

  10. Yüzeroğlu, M., Karaoğlan, G. K., Köse, G. G., & Erdoğmuş, A. (2021). Synthesis of new zinc phthalocyanines including Schiff base and halogen; photophysical, photochemical, and fluorescence quenching studies. Journal of Molecular Structure, 1238, 130423. https://doi.org/10.1016/j.molstruc.2021.130423

    Article  CAS  Google Scholar 

  11. Mi, Y., Chen, Y., Tan, W., Zhang, J., Li, Q., & Guo, Z. (2022). The influence of bioactive glyoxylate bearing Schiff base on antifungal and antioxidant activities to chitosan quaternary ammonium salts. Carbohydrate Polymers, 278, 118970. https://doi.org/10.1016/j.carbpol.2021.118970

    Article  CAS  PubMed  Google Scholar 

  12. Ahmed, Y. M., & Mohamed, G. G. (2021). Synthesis, spectral characterization, antimicrobial evaluation and molecular docking studies on new metal complexes of novel Schiff base derived from 4,6-dihydroxy-1,3-phenylenediethanone. Journal of Molecular Structure, 1256, 132496. https://doi.org/10.1016/j.molstruc.2022.132496

    Article  CAS  Google Scholar 

  13. Sen, P., Yildiz, S. Z., Tuna, M., & Canlica, M. (2014). Preparation of aldehyde substituted phthalocyanines with improved yield and their use for Schiff base metal complex formation. Journal of Organometallic Chemistry, 769, 38–45. https://doi.org/10.1016/j.jorganchem.2014.07.007

    Article  CAS  Google Scholar 

  14. Karaoğlan, G. K. (2022). Synthesis of new Schiff base and its Ni(II), Cu(II), Zn(II) and Co(II) complexes; photophysical, fluorescence quenching and thermal studies. Journal of Molecular Structure, 1256, 132534. https://doi.org/10.1016/j.molstruc.2022.132534

    Article  CAS  Google Scholar 

  15. Çamur, M., Ahsen, V., & Durmuş, M. (2011). The first comparison of photophysical and photochemical properties of non-ionic, ionic and zwitterionic gallium (III) and indium (III) phthalocyanines. Journal of Photochemistry and Photobiology A: Chemistry, 219, 217–227. https://doi.org/10.1016/j.jphotochem.2011.02.014

    Article  CAS  Google Scholar 

  16. Kutlu, Ö. D., Erdoğmuş, A., Şen, P., & Yıldız, S. Z. (2023). Peripherally tetra-Schiff base substituted metal-free and zinc(II) phthalocyanine, its water-soluble derivative: Synthesis, characterization, photo-physicochemical, aggregation properties and DNA/BSA binding activity. Journal of Molecular Structure. https://doi.org/10.1016/j.molstruc.2023.135375

    Article  Google Scholar 

  17. Harmandar, K., Saglam, M. F., Sengul, I. F., Ekineker, G., Balcik-Ercin, P., Göksel, M., & Atilla, D. (2021). Novel triazole containing zinc(II)phthalocyanine Schiff bases: determination of photophysical and photochemical properties for photodynamic cancer therapy. Inorganica Chimica Acta, 519, 120286. https://doi.org/10.1016/j.ca.2021.120286

    Article  CAS  Google Scholar 

  18. Ünlü, S., Elmalı, F. T., Atmaca, G. Y., & Erdoğmuş, A. (2022). Synthesis of axially Schiff base new substituted silicon phthalocyanines and investigation of photochemical and sono-photochemical properties. Photodiagnosis and Photodynamic Therapy, 40, 103192. https://doi.org/10.1016/j.pdpdt.2022.103192

    Article  CAS  PubMed  Google Scholar 

  19. Durmuş, M., Erdoğmuş, A., Ogunsipe, A., & Nyokong, T. (2009). The synthesis and photophysicochemical behaviour of novel water-soluble cationic indium(III) phthalocyanine. Dyes and Pigments, 82, 244–250. https://doi.org/10.1016/j.dyepig.2009.01.008

    Article  CAS  Google Scholar 

  20. Wood, S. R., Holroyd, J. A., & Brown, S. B. (1997). The subcellular localization of Zn(II) phthalocyanines and their redistribution on exposure to light. Photochemistry and Photobiology, 65, 397–402. https://doi.org/10.1111/j.1751-1097.1997.tb08577.x

    Article  CAS  PubMed  Google Scholar 

  21. Idowu, M., Ogunsipe, A., & Nyokong, T. (2007). Excited state dynamics of zinc and aluminum phthalocyanine carboxylates. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 68, 995–999. https://doi.org/10.1016/j.saa.2007.01.025

    Article  CAS  PubMed  Google Scholar 

  22. Ilgün, C., Sevim, A. M., Çakar, S., Özacar, M., & Gül, A. (2021). Novel Co and Zn-phthalocyanine dyes with octa-carboxylic acid substituents for DSSCs. Solar Energy, 218, 169–179. https://doi.org/10.1016/j.solener.2021.02.042

    Article  CAS  Google Scholar 

  23. Günsel, A., Atmaca, G. Y., Taslimi, P., Bilgiçli, A. T., Gülçin, İ, Erdoğmuş, A., & Yarasir, M. N. (2020). Synthesis, characterization, photo-physicochemical and biological properties of water-soluble tetra-substituted phthalocyanines: antidiabetic, anticancer and anticholinergic potentials. Journal of Photochemistry and Photobiology A: Chemistry, 396, 112511. https://doi.org/10.1016/j.jphotochem.2020.112511

    Article  CAS  Google Scholar 

  24. Sharman, W. M., Kudrevich, S. V., & van Lier, J. E. (1996). Novel water-soluble phthalocyanines substituted with phosphonate moieties on the benzo rings. Tetrahedron Letters, 37, 5831–5834. https://doi.org/10.1016/0040-4039(96)01243-9

    Article  CAS  Google Scholar 

  25. Zhang, L., Wang, A., Lu, S., Zhou, L., Zhou, J., Lin, Y., & Wei, S. (2015). The influences of the number of the ammonium groups and their arrangement manner on the photophysical properties of the quaternized zinc phthalocyanines. Inorganic Chemistry Communications, 53, 15–19. https://doi.org/10.1016/j.inoche.2015.01.009

    Article  CAS  Google Scholar 

  26. Çakır, V., Göksel, M., Durmuş, M., & Bıyıklıoğlu, Z. (2016). Synthesis and photophysicochemical properties of novel water soluble phthalocyanines. Dyes and Pigments, 125, 414–425. https://doi.org/10.1016/j.dyepig.2015.10.035

    Article  CAS  Google Scholar 

  27. Erdoğmuş, A., & Nyokong, T. (2010). Synthesis of zinc phthalocyanine derivatives with improved photophysicochemical properties in aqueous media. Journal of Molecular Structure, 977, 26–38. https://doi.org/10.1016/j.molstruc.2010.04.048

    Article  CAS  Google Scholar 

  28. Yılmaz, H. E., Bağda, E., Bağda, E., & Durmuş, M. (2021). Interaction of water soluble cationic gallium(III) phthalocyanines with different G-quadruplex DNAs. Polyhedron, 208, 115404. https://doi.org/10.1016/j.poly.2021.115404

    Article  CAS  Google Scholar 

  29. Sen, P., & Nyokong, T. (2021). Promising photodynamic antimicrobial activity of polyimine substituted zinc phthalocyanine and its polycationic derivative when conjugated to nitrogen, sulfur, co-doped graphene quantum dots against Staphylococcus aureus. Photodiagnosis and Photodynamic Therapy, 34, 102300. https://doi.org/10.1016/j.pdpdt.2021.102300

    Article  CAS  PubMed  Google Scholar 

  30. Kırbaç, E., & Erdoğmuş, A. (2020). New non-peripherally substituted zinc phthalocyanines; synthesis, and comparative photophysicochemical properties. Journal of Molecular Structure, 1202, 127392. https://doi.org/10.1016/j.molstruc.2019.127392

    Article  CAS  Google Scholar 

  31. Atmaca, G. Y., Aksel, M., Keskin, B., Bilgin, M. D., & Erdoğmuş, A. (2021). The photo-physicochemical properties and in vitro sonophotodynamic therapy activity of Di-axially substituted silicon phthalocyanines on PC3 prostate cancer cell line. Dyes and Pigments, 184, 108760. https://doi.org/10.1016/j.dyepig.2020.108760

    Article  CAS  Google Scholar 

  32. Sen, P., Sindelo, A., Mafukidze, D. M., & Nyokong, T. (2019). Synthesis and photophysicochemical properties of novel axially disubstituted silicon (IV) phthalocyanines and their photodynamic antimicrobial chemotherapy (PACT) activity against Staphylococcus aureus. Synthetic Metals, 258, 116203. https://doi.org/10.1016/j.synthmet.2019.116203

    Article  CAS  Google Scholar 

  33. Günsel, A., Güzel, E., Bilgiçli, A. T., Atmaca, G. Y., Erdoğmuş, A., & Yaraşır, M. N. (2017). Synthesis and investigation of photophysicochemical properties of novel ketone-substituted gallium (III) and indium (III) phthalocyanines with high singlet oxygen yield for photodynamic therapy. Journal of Luminescence, 192, 888–892. https://doi.org/10.1016/j.jlumin.2017.08.014

    Article  CAS  Google Scholar 

  34. Song, Y. M., Wu, Q., Yang, P. J., Luan, N. N., Wang, L. F., & Liu, Y. M. (2006). DNA Binding and cleavage activity of Ni(II) complex with all-trans retinoic acid. Journal of Inorganic Biochemistry, 100, 1685–1691. https://doi.org/10.1016/j.jinorgbio.2006.06.001

    Article  CAS  PubMed  Google Scholar 

  35. Kanchanadevi, S., Fronczek, F. R., David, C. I., Nandhakumar, R., & Mahalingam, V. (2021). Investigation of DNA/BSA binding and cytotoxic properties of new Co(II), Ni(II) and Cu(II) hydrazone complexes. Inorganica Chimica Acta, 526, 120536. https://doi.org/10.1016/j.ica.2021.120536

    Article  CAS  Google Scholar 

  36. Baran, N. Y., & Saçak, M. (2018). Preparation of highly thermally stable and conductive Schiff base polymer: molecular weight monitoring and investigation of antimicrobial properties. Journal of Molecular Structure, 1163, 22–32. https://doi.org/10.1016/j.molstruc.2018.02.088

    Article  CAS  Google Scholar 

  37. Hegazy, G. H., & Ali, H. I. (2012). Design, synthesis, biological evaluation, and comparative Cox1 and Cox2 docking of p-substituted benzylidenamino phenyl esters of ibuprofenic and mefenamic acids. Bioorganic and Medicinal Chemistry, 20, 1259–1270. https://doi.org/10.1016/j.bmc.2011.12.030

    Article  CAS  PubMed  Google Scholar 

  38. Bayrak, R., Albay, C., Koç, M., Altın, İ, Değirmencioğlu, İ, & Sökmen, M. (2016). Preparation of phthalocyanine/TiO2 nanocomposites for photocatalytic removal of toxic Cr(VI) ions. Process Safety and Environmental Protection, 102, 294–302. https://doi.org/10.1016/j.psep.2016.03.023

    Article  CAS  Google Scholar 

  39. Dhupal, M., Oh, J. M., Tripathy, D. R., Kim, S. K., Koh, S. B., & Park, K. S. (2018). Immunotoxicity of titanium dioxide nanoparticles via simultaneous induction of apoptosis and multiple toll-like receptors signaling through ROS-dependent SAPK/JNK and p38 MAPK activation. International Journal of Nanomedicine, 13, 6735–6750. https://doi.org/10.2147/IJN.S176087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Güzel, E., Atmaca, G. Y., Kuznetsov, A. E., Turkkol, A., Bilgin, M. D., & Erdoğmuş, A. (2022). Ultrasound versus light: Exploring photophysicochemical and sonochemical properties of phthalocyanine-based therapeutics, theoretical study, and in vitro evaluations. ACS Applied Bio Materials, 5, 1139–1150. https://doi.org/10.1021/acsabm.1c01199

    Article  CAS  PubMed  Google Scholar 

  41. Yalçin, A., Şarkici, G., & Kolaç, U. K. (2020). PKR inhibitors suppress endoplasmic reticulum stress and subdue glucolipotoxicity-mediated impairment of insulin secretion in pancreatic beta cells. Turkish Journal of Biology, 44, 93–102. https://doi.org/10.3906/biy-1909-20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kolac, U. K., Eken, M. K., Ünübol, M., Yalcin, G. D., & Yalcin, A. (2021). The effect of gestational diabetes on the expression of mitochondrial fusion proteins in placental tissue. Placenta, 115, 106–114. https://doi.org/10.1016/j.placenta.2021.09.015

    Article  CAS  PubMed  Google Scholar 

  43. Çakır, V., Çakır, D., Göksel, M., Durmuş, M., Bıyıklıoğlu, Z., & Kantekin, H. (2015). Synthesis, photochemical, bovine serum albumin and DNA binding properties of tetrasubstituted zinc phthalocyanines and their water soluble derivatives. Journal of Photochemistry and Photobiology A: Chemistry, 299, 138–151. https://doi.org/10.1016/j.jphotochem.2014.11.007

    Article  CAS  Google Scholar 

  44. Yanık, H., Al-Raqa, S. Y., Aljuhani, A., & Durmuş, M. (2016). The synthesis of novel directly conjugated zinc(II) phthalocyanine via palladium-catalyzed SuzukieMiyaura cross-coupling reaction and its quaternized water-soluble derivative: Investigation of photophysical and photochemical properties. Dyes and Pigments, 134, 531–540. https://doi.org/10.1016/j.dyepig.2016.08.009

    Article  CAS  Google Scholar 

  45. Çolak, S., Durmuş, M., & Yıldız, S. Z. (2016). Tetrakis{2-[N-((3-morpholino)propyl)carbamate]oxyethyl} zinc(II) phthalocyanine and its water soluble derivatives: synthesis, photophysical, photochemical and protein binding properties. Journal of Photochemistry and Photobiology A: Chemistry, 325, 125–134. https://doi.org/10.1016/j.jphotochem.2016.04.006

    Article  CAS  Google Scholar 

  46. Nyokong, T. (2007). Effects of substituents on the photochemical and photophysical properties of main group metal phthalocyanines. Coordination Chemistry Reviews, 251, 1707–1722. https://doi.org/10.1016/j.ccr.2006.11.011

    Article  CAS  Google Scholar 

  47. Çakır, V., Çakır, D., Pişkin, M., Durmuş, M., & Bıyıklıoğlu, Z. (2014). Water soluble peripheral and non-peripheral tetrasubstituted zinc phthalocyanines: synthesis, photochemistry and bovine serum albumin binding behavior. Journal of Luminescence, 154, 274–284. https://doi.org/10.1016/j.jlumin.2014.04.030

    Article  CAS  Google Scholar 

  48. Amitha, G. S., & Vasudevan, S. (2020). DNA/BSA binding studies of peripherally tetra substituted neutral azophenoxy zinc phthalocyanine. Polyhedron, 175, 114208. https://doi.org/10.1016/j.poly.2019.114208

    Article  CAS  Google Scholar 

  49. Murov, S. L., Carmichael, I., & Hug, G. L. (1993). Handbook of photochemistry. Marcel Dekker.

    Google Scholar 

  50. Amitha, G. S., & Vasudevan, S. (2020). DNA binding and cleavage studies of novel Betti base substituted quaternary Cu(II) and Zn(II) phthalocyanines. Polyhedron, 190, 114773. https://doi.org/10.1016/j.poly.2020.114773

    Article  CAS  Google Scholar 

  51. de Melo Gomes, L. C., de Oliveira Cunha, A. B., Peixoto, L. F. F., Zanon, R. G., Botelho, F. V., Silva, M. J. B., Pinto-Fochi, M. E., Goes, R. M., de Paoli, F., & Ribeiro, D. L. (2023). Photodynamic therapy reduces cell viability, migration and triggers necroptosis in prostate tumor cells. Photochemical & Photobiological Sciences. https://doi.org/10.1007/s43630-023-00382-9

    Article  Google Scholar 

  52. Atmaca, G. Y., Aksel, M., Bilgin, M. D., & Erdoğmuş, A. (2023). Comparison of sonodynamic, photodynamic and sonophotodynamic therapy activity of fluorinated pyridine substituted silicon phthalocyanines on PC3 prostate cancer cell line. Photodiagnosis and Photodynamic Therapy, 42, 103339. https://doi.org/10.1016/j.pdpdt.2023.103339

    Article  CAS  PubMed  Google Scholar 

  53. Ayaz, F., Yetkin, D., Yüzer, A., Demircioğlu, K., & İnce, M. (2022). Non-canonical anti-cancer, anti-metastatic, anti-angiogenic and immunomodulatory PDT potentials of water soluble phthalocyanine derivatives with imidazole groups and their intracellular mechanism of action. Photodiagnosis and Photodynamic Therapy, 39, 103035. https://doi.org/10.1016/j.pdpdt.2022.103035

    Article  CAS  PubMed  Google Scholar 

  54. Gryko, M., Łukaszewicz-Zając, M., Guzińska-Ustymowicz, K., Kucharewicz, M., Mroczko, B., & Algirdas, U. (2023). The caspase-8 and procaspase-3 expression in gastric cancer and non-cancer mucosa in relation to clinico-morphological factors and some apoptosis-associated proteins. Advances in Medical Sciences, 68(1), 94–100. https://doi.org/10.1016/j.advms.2023.02.001

    Article  CAS  PubMed  Google Scholar 

  55. Wang, Q., Suo, Y., Wang, X., Wang, Y., Tian, X., Gao, Y., Liu, N., & Liu, R. (2021). Study on the mechanism of photodynamic therapy mediated by 5-aminoketovalerate in human ovarian cancer cell line. Lasers in Medical Science, 36, 1873–1881. https://doi.org/10.1007/s10103-020-03226-5

    Article  PubMed  Google Scholar 

  56. Cui, X. Y., Park, S. H., & Park, W. H. (2020). Auranofin inhibits the proliferation of lung cancer cells via necrosis and caspase-dependent apoptosis. Oncology Reports, 44, 2715–2724. https://doi.org/10.3892/or.2020.7818

    Article  CAS  PubMed  Google Scholar 

  57. Tan, P., Cai, H., Wei, Q., Tang, X., Zhang, Q., Kopytynski, M., Yang, J., Yi, Y., Zhang, H., Gong, Q., Gu, Z., Chen, R., & Luo, K. (2021). Enhanced chemo-photodynamic therapy of an enzyme-responsive prodrug in bladder cancer patient-derived xenograft models. Biomaterials, 277, 121061. https://doi.org/10.1016/j.biomaterials.2021.121061

    Article  CAS  PubMed  Google Scholar 

  58. Rutz, J., Maxeiner, S., Juengel, E., Bernd, A., Kippenberger, S., Zöller, N., Chun, F. K. H., & Blaheta, R. A. (2019). Growth and proliferation of renal cell carcinoma cells is blocked by low curcumin concentrations combined with visible light irradiation. International Journal of Molecular Sciences, 20(6), 1464. https://doi.org/10.3390/ijms20061464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hu, J., Song, J., Tang, Z., Wei, S., Chen, L., & Zhou, R. (2021). Hypericin-mediated photodynamic therapy inhibits growth of colorectal cancer cells via inducing S phase cell cycle arrest and apoptosis. European Journal of Pharmacology, 900, 174071. https://doi.org/10.1016/j.ejphar.2021.174071

    Article  CAS  PubMed  Google Scholar 

  60. Zafari, J., Zadehmodarres, S., Jouni, F. J., Bagheri-Hosseinabadi, Z., Najjar, N., & Asnaashari, M. (2020). Investigation into the effect of photodynamic therapy and cisplatin on the cervical cancer cell line (A2780). Journal of Lasers in Medical Sciences, 11, S85–S91.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Erdogan, O., Abbak, M., Demirbolat, G. M., Birtekocak, F., Aksel, M., Pasa, S., & Cevik, O. (2019). Green synthesis of silver nanoparticles via Cynara scolymus leaf extracts: The characterization, anticancer potential with photodynamic therapy in MCF7 cells. PLoS ONE, 14, e0216496. https://doi.org/10.1371/journal.pone.0216496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Aksel, M., Kesmez, Ö., Yavaş, A., & Bilgin, M. D. (2021). Titaniumdioxide mediated sonophotodynamic therapy against prostate cancer. Journal of Photochemistry and Photobiology B: Biology, 225, 112333. https://doi.org/10.1016/j.jphotobiol.2021.112333

    Article  CAS  PubMed  Google Scholar 

  63. Lu, J., Mao, Y., Feng, S., Li, X., Gao, Y., Zhao, Q., & Wang, S. (2022). Biomimetic smart mesoporous carbon nanozyme as a dual-GSH depletion agent and O2 generator for enhanced photodynamic therapy. Acta Biomaterialia, 148, 310–322. https://doi.org/10.1016/j.actbio.2022.06.001

    Article  CAS  PubMed  Google Scholar 

  64. Zhuo, Z., Song, Z., Ma, Z., Zhang, Y., Xu, G., & Chen, G. (2019). Chlorophyllin e6-mediated photodynamic therapy inhibits proliferation and induces apoptosis in human bladder cancer cells. Oncology Reports, 41(4), 2181–2193. https://doi.org/10.3892/or.2019.7013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Dos Santos, A. F., de Almeida, D. R. Q., Terra, L. F., Wailemann, R. A., Gomes, V. M., Arini, G. S., Ravagnani, F. G., Baptista, M. S., & Labriola, L. (2020). Fluence rate determines PDT efficiency in breast cancer cells displaying different GSH levels. Photochemistry And Photobiology, 96(3), 658–667. https://doi.org/10.1111/php.13182

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by The Scientific & Technological Research Council of Turkey (TUBITAK, Project no: 219Z084). The authors would like to acknowledge that this paper is submitted in partial fulfillment of the requirements for PhD degree at Yildiz Technical University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Erdoğmuş.

Ethics declarations

Conflict of interest

The authors declare that they have no potential conflict of interest in this work.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 19899 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kocaağa, N., Türkkol, A., Bilgin, M.D. et al. The synthesis of novel water-soluble zinc (II) phthalocyanine based photosensitizers and exploring of photodynamic therapy activities on the PC3 cancer cell line. Photochem Photobiol Sci 22, 2037–2053 (2023). https://doi.org/10.1007/s43630-023-00428-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-023-00428-y

Keywords

Navigation