Skip to main content

Advertisement

Log in

Hydrogen peroxide enhanced photoinactivation of Candida albicans by a novel boron-dipyrromethene (BODIPY) derivative

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Photodynamic inactivation (PDI) has received increasing attention as a promising approach to combat Candida albicans infections. This study aimed to evaluate the synergistic effect of a new BODIPY (4,4-difluoro-boradiazaindacene) derivative and hydrogen peroxide on C. albicans. BDP-4L in combination with H2O2 demonstrated enhanced photokilling efficacy. In suspended cultures of C. albicans, the maximum decrease was 6.20 log and 2.56 log for PDI using BDP-4L (2.5 μM) with or without H2O2, respectively. For mature C. albicans biofilms, 20 μM BDP-4L plus H2O2 eradicated C. albicans, causing an over 6.7 log count reduction in biofilm-associated cells, while only a reduction of ~ 1 log count was observed when H2O2 was omitted. Scanning electron microscopy analysis and LIVE/DEAD assays suggested that PDI using BDP-4L plus H2O2 induced more damage to the cell membrane. Correspondingly, amplification of nucleic acids release was observed in biofilms treated with the combined PDI. Additionally, we also discovered that the addition of hydrogen peroxide potentiated the generation of 1O2 in PDI using the singlet oxygen sensor green probe. Collectively, BDP-4L combined with H2O2 presents a promising approach in the treatment of C. albicans infections.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability statement

The data presented in this study are available on request from the corresponding author.

References

  1. von Lilienfeld-Toal, M., Wagener, J., Einsele, H., Cornely, O. A., & Kurzai, O. (2019). Invasive fungal infection. Deutsches Ärzteblatt International, 116(16), 271–278.

    Google Scholar 

  2. Mayer, F. L., Wilson, D., & Hube, B. (2013). Candida albicans pathogenicity mechanisms. Virulence, 4(2), 119.

    PubMed  PubMed Central  Google Scholar 

  3. Roope, L. S. J., Smith, R. D., Pouwels, K. B., Buchanan, J., Abel, L., Eibich, P., Butler, C. C., Tan, P. S., Walker, A. S., Robotham, J. V., & Wordsworth, S. (2019). The challenge of antimicrobial resistance: What economics can contribute. Science, 364(6435), 4679.

    Google Scholar 

  4. Poulain, D. (2015). Candida albicans, plasticity and pathogenesis. Critical Reviews in Microbiology, 41(2), 208–217.

    CAS  PubMed  Google Scholar 

  5. Ramage, G., Saville, S. P., Thomas, D. P., & López-Ribot, J. L. (2005). Candida biofilms: An update. Eukaryotic Cell, 4(4), 633–638.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Garcia, B. A., Panariello, B. H. D., Freitas-Pontes, K. M., & Duarte, S. (2021). Candida biofilm matrix as a resistance mechanism against photodynamic therapy. Photodiagnosis and Photodynamic Therapy, 36, 102525.

    CAS  PubMed  Google Scholar 

  7. Ghosh, C., Sarkar, P., Issa, R., & Haldar, J. (2019). Alternatives to Conventional antibiotics in the era of antimicrobial resistance. Trends in Microbiology, 27(4), 323–338.

    CAS  PubMed  Google Scholar 

  8. Shen, J. J., Jemec, G. B. E., Arendrup, M. C., & Saunte, D. M. L. (2020). Photodynamic therapy treatment of superficial fungal infections: A systematic review. Photodiagnosis and Photodynamic Therapy, 31, 101774.

    CAS  PubMed  Google Scholar 

  9. Plotino, G., Grande, N. M., & Mercade, M. (2019). Photodynamic therapy in endodontics. International Endodontic Journal, 52(6), 760–774.

    CAS  PubMed  Google Scholar 

  10. van Straten, D., Mashayekhi, V., de Bruijn, H. S., Oliveira, S., & Robinson, D. J. (2017). Oncologic photodynamic therapy: Basic principles, current clinical status and future directions. Cancers (Basel), 9(2), 19.

    PubMed  PubMed Central  Google Scholar 

  11. Wainwright, M., Maisch, T., Nonell, S., Plaetzer, K., Almeida, A., Tegos, G. P., & Hamblin, M. R. (2017). Photoantimicrobials-are we afraid of the light? The Lancet Infectious Diseases, 17(2), e49–e55.

    PubMed  Google Scholar 

  12. Alves, E., Faustino, M. A., Neves, M. G., Cunha, A., Tome, J., & Almeida, A. (2014). An insight on bacterial cellular targets of photodynamic inactivation. Future Medicinal Chemistry, 6(2), 141–164.

    CAS  PubMed  Google Scholar 

  13. Baptista, M. S., Cadet, J., Di Mascio, P., Ghogare, A. A., Greer, A., Hamblin, M. R., Lorente, C., Nunez, S. C., Ribeiro, M. S., Thomas, A. H., Vignoni, M., & Yoshimura, T. M. (2017). Type I and type II photosensitized oxidation reactions: Guidelines and mechanistic pathways. Photochemistry and Photobiology, 93(4), 912–919.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Almeida, A., Faustino, M. A., & Tomé, J. P. (2015). Photodynamic inactivation of bacteria: Finding the effective targets. Future Medicinal Chemistry, 7(10), 1221–1224.

    CAS  PubMed  Google Scholar 

  15. Dai, T., Huang, Y. Y., & Hamblin, M. R. (2009). Photodynamic therapy for localized infections—State of the art. Photodiagnosis and Photodynamic Therapy, 6(3–4), 170–188.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Kharkwal, G. B., Sharma, S. K., Huang, Y. Y., Dai, T., & Hamblin, M. R. (2011). Photodynamic therapy for infections: Clinical applications. Lasers in Surgery and Medicine, 43(7), 755–767.

    PubMed  PubMed Central  Google Scholar 

  17. Jori, G., Fabris, C., Soncin, M., Ferro, S., Coppellotti, O., Dei, D., Fantetti, L., Chiti, G., & Roncucci, G. (2006). Photodynamic therapy in the treatment of microbial infections: Basic principles and perspective applications. Lasers in Surgery and Medicine, 38(5), 468–481.

    PubMed  Google Scholar 

  18. Kashef, N., & Hamblin, M. R. (2017). Can microbial cells develop resistance to oxidative stress in antimicrobial photodynamic inactivation? Drug Resist Update, 31, 31–42.

    Google Scholar 

  19. Sobotta, L., Skupin-Mrugalska, P., Piskorz, J., & Mielcarek, J. (2019). Porphyrinoid photosensitizers mediated photodynamic inactivation against bacteria. European Journal of Medicinal Chemistry, 175, 72–106.

    CAS  PubMed  Google Scholar 

  20. Zhu, T., Xiong, J., Xue, Z., Su, Y., Sun, F., Chai, R., Xu, J., Feng, Y., & Meng, S. (2018). A novel amphiphilic fluorescent probe BODIPY-O-CMC-cRGD as a biomarker and nanoparticle vector. RSC Advances, 8(36), 20087–20094.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Boens, N., Leen, V., & Dehaen, W. (2012). Fluorescent indicators based on BODIPY. Chemical Society Reviews, 41(3), 1130–1172.

    CAS  PubMed  Google Scholar 

  22. Ulrich, G., Ziessel, R., & Harriman, A. (2008). The chemistry of fluorescent bodipy dyes: Versatility unsurpassed. Angewandte Chemie (International Ed. in English), 47(7), 1184–1201.

    CAS  PubMed  Google Scholar 

  23. Alnoman, R. B., Parveen, S., Hagar, M., Ahmed, H. A., & Knight, J. G. (2020). A new chiral boron-dipyrromethene (BODIPY)-based fluorescent probe: Molecular docking, DFT, antibacterial and antioxidant approaches. Journal of Biomolecules Structure and Dynamics, 38(18), 5429–5442.

    CAS  Google Scholar 

  24. Orlandi, V. T., Martegani, E., Bolognese, F., & Caruso, E. (2022). Searching for antimicrobial photosensitizers among a panel of BODIPYs. Photochemical & Photobiological Sciences, 21(7), 1233–1248.

    CAS  Google Scholar 

  25. Gu, K., Lin, G., Zhu, Y., Ji, X., & Zhao, W. (2020). Anchoring BODIPY photosensitizers enable pan-microbial photoinactivation. European Journal of Medicinal Chemistry, 199, 112361.

    CAS  PubMed  Google Scholar 

  26. Wang, M., Gu, K., Ding, W., Wan, M., Zhao, W., Shi, H., & Li, J. (2022). Antifungal effect of a new photosensitizer derived from BODIPY on Candida albicans biofilms. Photodiagnosis and Photodynamic Therapy, 39, 102946.

    CAS  PubMed  Google Scholar 

  27. Li, Y., Du, J., Huang, S., Wang, S., Wang, Y., Cai, Z., Lei, L., & Huang, X. (2022). Hydrogen peroxide potentiates antimicrobial photodynamic therapy in eliminating Candida albicans and Streptococcus mutans dual-species biofilm from denture base. Photodiagnosis and Photodynamic Therapy, 37, 102691.

    CAS  PubMed  Google Scholar 

  28. Yang, S. M., Lee, D. W., Park, H. J., Kwak, M. H., Park, J. M., & Choi, M. G. (2019). Hydrogen peroxide enhances the antibacterial effect of methylene blue-based photodynamic therapy on biofilm-forming bacteria. Photochemistry and Photobiology, 95(3), 833–838.

    CAS  PubMed  Google Scholar 

  29. Kunz, D., Wirth, J., Sculean, A., & Eick, S. (2019). In- vitro-activity of additive application of hydrogen peroxide in antimicrobial photodynamic therapy using LED in the blue spectrum against bacteria and biofilm associated with periodontal disease. Photodiagnosis and Photodynamic Therapy, 26, 306–312.

    CAS  PubMed  Google Scholar 

  30. Nie, M., Silva, R. C. E., de Oliveira, K. T., Bagnato, V. S., de Souza Rastelli, A. N., Crielaard, W., Yang, J., & Deng, D. M. (2021). Synergetic antimicrobial effect of chlorin e6 and hydrogen peroxide on multi-species biofilms. Biofouling, 37(6), 656–665.

    CAS  PubMed  Google Scholar 

  31. Murphy, E. C., & Friedman, A. J. (2019). Hydrogen peroxide and cutaneous biology: Translational applications, benefits, and risks. Journal of the American Academy of Dermatology, 81(6), 1379–1386.

    CAS  PubMed  Google Scholar 

  32. Pinto, A. P., Rosseti, I. B., Carvalho, M. L., da Silva, B. G. M., Alberto-Silva, C., & Costa, M. S. (2018). Photodynamic antimicrobial chemotherapy (PACT), using toluidine blue O inhibits the viability of biofilm produced by Candida albicans at different stages of development. Photodiagnosis and Photodynamic Therapy, 21, 182–189.

    CAS  PubMed  Google Scholar 

  33. Giroldo, L. M., Felipe, M. P., de Oliveira, M. A., Munin, E., Alves, L. P., & Costa, M. S. (2009). Photodynamic antimicrobial chemotherapy (PACT) with methylene blue increases membrane permeability in Candida albicans. Lasers in Medical Science, 24(1), 109–112.

    PubMed  Google Scholar 

  34. Hung, J. H., Wang, Z. X., Lo, Y. H., Lee, C. N., Chang, Y., Chang, R. Y., Huang, C. C., & Wong, T. W. (2022). Rose Bengal-mediated photodynamic therapy to inhibit Candida albicans. Journal of Visualised Experiments, 24, 181.

    Google Scholar 

  35. Decker, E. M., Bartha, V., & von Ohle, C. (2017). Improvement of antibacterial efficacy through synergistic effect in photodynamic therapy based on thiazinium chromophores against planktonic and biofilm-associated periodontopathogens. Photomedicine and Laser Surgery, 35(4), 195–205.

    CAS  PubMed  Google Scholar 

  36. Garcez, A. S., Núñez, S. C., Baptista, M. S., Daghastanli, N. A., Itri, R., Hamblin, M. R., & Ribeiro, M. S. (2011). Antimicrobial mechanisms behind photodynamic effect in the presence of hydrogen peroxide. Photochemical & Photobiological Sciences, 10(4), 483–490.

    CAS  Google Scholar 

  37. Beirão, S., Fernandes, S., Coelho, J., Faustino, M. A., Tomé, J. P., Neves, M. G., Tomé, A. C., Almeida, A., & Cunha, A. (2014). Photodynamic inactivation of bacterial and yeast biofilms with a cationic porphyrin. Photochemistry and Photobiology, 90(6), 1387–1396.

    PubMed  Google Scholar 

  38. Huang, M. C., Shen, M., Huang, Y. J., Lin, H. C., & Chen, C. T. (2018). Photodynamic inactivation potentiates the susceptibility of antifungal agents against the planktonic and biofilm cells of Candida albicans. International Journal of Molecular Science, 19, 2.

    Google Scholar 

  39. Cernáková, L., Dižová, S., & Bujdáková, H. (2017). Employment of methylene blue irradiated with laser light source in photodynamic inactivation of biofilm formed by Candida albicans strain resistant to fluconazole. Medical Mycology, 55(7), 748–753.

    PubMed  Google Scholar 

  40. Daliri, F., Azizi, A., Goudarzi, M., Lawaf, S., & Rahimi, A. (2019). In vitro comparison of the effect of photodynamic therapy with curcumin and methylene blue on Candida albicans colonies. Photodiagnosis and Photodynamic Therapy, 26, 193–198.

    CAS  PubMed  Google Scholar 

  41. Souza, R. C., Junqueira, J. C., Rossoni, R. D., Pereira, C. A., Munin, E., & Jorge, A. O. (2010). Comparison of the photodynamic fungicidal efficacy of methylene blue, toluidine blue, malachite green and low-power laser irradiation alone against Candida albicans. Lasers in Medical Science, 25(3), 385–389.

    PubMed  Google Scholar 

  42. Kato, I. T., Prates, R. A., Sabino, C. P., Fuchs, B. B., Tegos, G. P., Mylonakis, E., Hamblin, M. R., & Ribeiro, M. S. (2013). Antimicrobial photodynamic inactivation inhibits Candida albicans virulence factors and reduces in vivo pathogenicity. Antimicrobial Agents and Chemotherapy, 57(1), 445–451.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Urban, M. V., Rath, T., & Radtke, C. (2019). Hydrogen peroxide (H(2)O(2)): A review of its use in surgery. Wiener Medizinische Wochenschrift, 169(9–10), 222–225.

    PubMed  Google Scholar 

  44. McCullagh, C., & Robertson, P. K. (2006). Photo-dynamic biocidal action of methylene blue and hydrogen peroxide on the cyanobacterium Synechococcus leopoliensis under visible light irradiation. Journal of Photochemistry and Photobiology B: Biology, 83(1), 63–68.

    CAS  PubMed  Google Scholar 

  45. Garcez, A. S., & Hamblin, M. R. (2017). Methylene blue and hydrogen peroxide for photodynamic inactivation in root canal—A new protocol for use in endodontics. European Endodontology Journal, 2(1), 1–7.

    Google Scholar 

  46. Gião, M. S., Wilks, S. A., Azevedo, N. F., Vieira, M. J., & Keevil, C. W. (2009). Validation of SYTO 9/propidium iodide uptake for rapid detection of viable but noncultivable Legionella pneumophila. Microbial Ecology, 58(1), 56–62.

    PubMed  Google Scholar 

  47. Wan, P., Guo, W., Wang, Y., Deng, M., Xiao, C., & Chen, X. (2022). Photosensitizer-polypeptide conjugate for effective elimination of Candida albicans biofilm. Advanced Healthcare Materials, 11(16), e2200268.

    PubMed  Google Scholar 

  48. Prasad, A., Sedlářová, M., & Pospíšil, P. (2018). Singlet oxygen imaging using fluorescent probe Singlet oxygen sensor green in photosynthetic organisms. Science and Reports, 8(1), 13685.

    Google Scholar 

  49. Xu, T., Zhu, X., Yang, L., Bu, Y., Zhang, Y., Zhang, J., Wang, L., Yu, Z., & Zhou, H. (2021). Defective transition metal hydroxide-based nanoagents with hypoxia relief for photothermal-enhanced photodynamic therapy. Journal of Material Chemistry B, 9(4), 1018–1029.

    CAS  Google Scholar 

  50. Hong, L., Li, J., Luo, Y., Guo, T., Zhang, C., Ou, S., Long, Y., & Hu, Z. (2022). Recent advances in strategies for addressing hypoxia in tumor photodynamic therapy. Biomolecules, 12(1), 81.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The research was financially supported by the National Natural Science Foundation of China (No. 82030113) and Shanghai Municipal Science & Technology Pillar Program for Bio-pharmaceuticals (21S11907200).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weili Zhao, Hang Shi or Jiyang Li.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Gu, K., Wan, M. et al. Hydrogen peroxide enhanced photoinactivation of Candida albicans by a novel boron-dipyrromethene (BODIPY) derivative. Photochem Photobiol Sci 22, 1695–1706 (2023). https://doi.org/10.1007/s43630-023-00408-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-023-00408-2

Keywords

Navigation