Skip to main content

Advertisement

Log in

Dynamics of the energy transfer involved in a diarylethene-perylenebisimide dyad: comparison between the molecule and the nanoparticle level

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Photochromic materials are widely used to achieve fluorescence photoswitching. Understanding the energy transfer processes occurring in these systems would be an advantage for their use and better optimization of their properties. In this scope, we studied a diarylethene-perylenebisimide (DAE-PBI) dyad that presents a bright red emission and a large ON–OFF contrast, both in solution and in an aqueous suspension of nanoparticles (NPs). Using ultrafast transient absorption spectroscopy, the excited state dynamics was characterized for this dyad in THF solution and compared to its behavior in NPs state. An efficient energy transfer process between the PBI fluorophore and the DAE photochromic unit in its closed form was demonstrated, occurring in a few hundreds of femtoseconds.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data are available upon request from the authors.

References

  1. Hofmann, M., Eggeling, C., Jakobs, S., & Hell, S. W. (2005). Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins. Proceedings of the National Academy of Sciences, 102(49), 17565–17569. https://doi.org/10.1073/pnas.0506010102

    Article  CAS  Google Scholar 

  2. Grotjohann, T., Testa, I., Leutenegger, M., Bock, H., Urban, N. T., Lavoie-Cardinal, F., Willig, K. I., Eggeling, C., Jakobs, S., & Hell, S. W. (2011). Diffraction-unlimited all-optical imaging and writing with a photochromic GFP. Nature, 478(7368), 204–208. https://doi.org/10.1038/nature10497

    Article  CAS  PubMed  Google Scholar 

  3. Bates, M., Huang, B., Dempsey, G. T., & Zhuang, X. (2007). Multicolor super-resolution imaging with photo-switchable fluorescent probes. Science, 317(5845), 1749–1753. https://doi.org/10.1126/science.1146598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Qi, Q., Li, C., Liu, X., Jiang, S., Xu, Z., Lee, R., Zhu, M., Xu, B., & Tian, W. (2017). Solid-state photoinduced luminescence switch for advanced anticounterfeiting and super-resolution imaging applications. Journal of the American Chemical Society, 139(45), 16036–16039. https://doi.org/10.1021/jacs.7b07738

    Article  CAS  PubMed  Google Scholar 

  5. Irie, M., Fukaminato, T., Sasaki, T., Tamai, N., & Kawai, T. (2002). A digital fluorescent molecular photoswitch. Nature, 420(6917), 759–760. https://doi.org/10.1038/420759a

    Article  CAS  PubMed  Google Scholar 

  6. Fukaminato, T., Doi, T., Tamaoki, N., Okuno, K., Ishibashi, Y., Miyasaka, H., & Irie, M. (2011). Single-molecule fluorescence photoswitching of a diarylethene−perylenebisimide dyad: Non-destructive fluorescence readout. Journal of the American Chemical Society, 133(13), 4984–4990. https://doi.org/10.1021/ja110686t

    Article  CAS  PubMed  Google Scholar 

  7. Irie, M., Fukaminato, T., Matsuda, K., & Kobatake, S. (2014). Photochromism of diarylethene molecules and crystals: memories, switches, and actuators. Chemical Reviews, 114(24), 12174–12277. https://doi.org/10.1021/cr500249p

    Article  CAS  PubMed  Google Scholar 

  8. Raymo, F. M., & Tomasulo, M. (2005). Electron and energy transfer modulation with photochromic switches. Chemical Society Reviews, 34(4), 327. https://doi.org/10.1039/b400387j

    Article  CAS  PubMed  Google Scholar 

  9. Medintz, I., & Hildebrandt, N. (2014). FRET-Förster Resonance Energy Transfer from Theory to Application. Wiley-VCH Verlag GmbH & Co.

    Google Scholar 

  10. Li, C., Yan, H., Zhao, L.-X., Zhang, G.-F., Hu, Z., Huang, Z.-L., & Zhu, M.-Q. (2014). A trident dithienylethene-perylenemonoimide dyad with super fluorescence switching speed and ratio. Nature Communications, 5(1), 5709. https://doi.org/10.1038/ncomms6709

    Article  CAS  PubMed  Google Scholar 

  11. Fukaminato, T., Hirose, T., Doi, T., Hazama, M., Matsuda, K., & Irie, M. (2014). Molecular design strategy toward diarylethenes that photoswitch with visible light. Journal of the American Chemical Society, 136(49), 17145–17154. https://doi.org/10.1021/ja5090749

    Article  CAS  PubMed  Google Scholar 

  12. Su, J., Fukaminato, T., Placial, J.-P., Onodera, T., Suzuki, R., Oikawa, H., Brosseau, A., Brisset, F., Pansu, R., Nakatani, K., & Métivier, R. (2016). Giant amplification of photoswitching by a few photons in fluorescent photochromic organic nanoparticles. Angewandte Chemie International Edition, 55(11), 3662–3666. https://doi.org/10.1002/anie.201510600

    Article  CAS  PubMed  Google Scholar 

  13. Ikariko, I., Deguchi, S., Fabre, N., Ishida, S., Kim, S., Kurihara, S., Métivier, R., & Fukaminato, T. (2020). Highly-stable red-emissive photochromic nanoparticles based on a diarylethene-perylenebisimide dyad. Dyes and Pigments, 180, 108490. https://doi.org/10.1016/j.dyepig.2020.108490

    Article  CAS  Google Scholar 

  14. Ruckebusch, C., Sliwa, M., Pernot, P., de Juan, A., & Tauler, R. (2012). Comprehensive data analysis of femtosecond transient absorption spectra: A review. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 13(1), 1–27. https://doi.org/10.1016/j.jphotochemrev.2011.10.002

    Article  CAS  Google Scholar 

  15. Debus, B., Sliwa, M., Miyasaka, H., Abe, J., & Ruckebusch, C. (2013). Multivariate curve resolution—alternating least squares to cope with deviations from data bilinearity in ultrafast time-resolved spectroscopy. Chemometrics and Intelligent Laboratory Systems, 128, 101–110. https://doi.org/10.1016/j.chemolab.2013.08.001

    Article  CAS  Google Scholar 

  16. Ishibashi, Y., Nakai, S., Masuda, K., Kitagawa, D., Kobatake, S., & Asahi, T. (2020). Nanosecond laser photothermal effect-triggered amplification of photochromic reaction in diarylethene nanoparticles. Chemical Communications, 56(1), 7088–7091. https://doi.org/10.1039/D0CC00884B

    Article  CAS  PubMed  Google Scholar 

  17. Sotome, H., Nagasaka, T., Une, K., Morikawa, S., Katayama, T., Kobatake, S., Irie, M., & Miyasaka, H. (2017). Cycloreversion reaction of a diarylethene derivative at higher excited states attained by two-color, two-photon femtosecond pulsed excitation. Journal of the American Chemical Society, 139(47), 17159–17167. https://doi.org/10.1021/jacs.7b09763

    Article  CAS  PubMed  Google Scholar 

  18. Fron, E., Schweitzer, G., Osswald, P., Würthner, F., Marsal, P., Beljonne, D., Müllen, K., De Schryver, F. C., & Van der Auweraer, M. (2008). Photophysical study of bay substituted perylenediimides. Photochemical & Photobiological Sciences, 7(12), 1509–1521. https://doi.org/10.1039/b813737d

    Article  CAS  Google Scholar 

  19. Roozbeh, A., de Bassi, M. J., Pereira, A. B., Roman, L. S., Buckup, T., & Heisler, I. A. (2020). Energy transfer in aqueously dispersed organic semiconductor nanoparticles. The Journal of Physical Chemistry C, 124(51), 27946–27953. https://doi.org/10.1021/acs.jpcc.0c09459

    Article  CAS  Google Scholar 

  20. Yasukuni, R., Asahi, T., Sugiyama, T., Masuhara, H., Sliwa, M., Hofkens, J., De Schryver, F. C., Van der Auweraer, M., Herrmann, A., & Müllen, K. (2008). Fabrication of fluorescent nanoparticles of dendronized perylenediimide by laser ablation in water. Applied Physics A, 93(1), 5–9. https://doi.org/10.1007/s00339-008-4661-5

    Article  CAS  Google Scholar 

  21. Vu, T. T., Dvorko, M., Schmidt, E. Y., Audibert, J.-F., Retailleau, P., Trofimov, B. A., Pansu, R. B., Clavier, G., & Méallet-Renault, R. (2013). Understanding the spectroscopic properties and aggregation process of a new emitting boron dipyrromethene (BODIPY). Journal of Physical Chemistry C, 117(10), 5373–5385. https://doi.org/10.1021/jp3097555

    Article  CAS  Google Scholar 

  22. Dostál, J., Fennel, F., Koch, F., Herbst, S., Würthner, F., & Brixner, T. (2018). Direct observation of exciton-exciton interactions. Nature Communications, 9(1), 2466. https://doi.org/10.1038/s41467-018-04884-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ghosh, I., Ghosh, T., Bardagi, J. I., & König, B. (2014). Reduction of aryl halides by consecutive visible light-induced electron transfer processes. Science, 346(6210), 725–728. https://doi.org/10.1126/science.1258232

    Article  CAS  PubMed  Google Scholar 

  24. Kobayashi, Y., & Abe, J. (2022). Recent advances in low-power-threshold nonlinear photochromic materials. Chemical Society Reviews, 51(7), 2397–2415. https://doi.org/10.1039/D1CS01144H

    Article  CAS  PubMed  Google Scholar 

  25. Nagasaka, T., Kunishi, T., Sotome, H., Koga, M., Morimoto, M., Irie, M., & Miyasaka, H. (2018). Multiphoton-gated cycloreversion reaction of a fluorescent diarylethene derivative as revealed by transient absorption spectroscopy. Physical Chemistry Chemical Physics: PCCP, 20(30), 19776–19783. https://doi.org/10.1039/C8CP01467A

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Funding from the Agence Nationale de la Recherche (ANR-17-CE07-0056-01) is acknowledged. CNRS is acknowledged for supporting partially this work through the Nanosynergetics IRP. Chevreul Institute (FR 2638), Ministère de l’Enseignement Supérieur, de la Recherche et de l’Innovation, Hauts-de-France Region and FEDER are acknowledged for supporting and funding partially this work through access to the time-resolved platform.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tuyoshi Fukaminato, Michel Sliwa or Rémi Métivier.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 900 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fabre, N., Fukaminato, T., Brosseau, A. et al. Dynamics of the energy transfer involved in a diarylethene-perylenebisimide dyad: comparison between the molecule and the nanoparticle level. Photochem Photobiol Sci 22, 1673–1681 (2023). https://doi.org/10.1007/s43630-023-00405-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-023-00405-5

Keywords

Navigation