Skip to main content

Advertisement

Log in

Effect of carbon quantum dots derived from extracts of UV-B-exposed Eclipta alba on alcohol-induced liver cirrhosis in Golden Hamster

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The Eclipta alba plant is considered hepatoprotective, owing to its phytoconstituents wedelolactone. In the current study, effect of elevated ultraviolet-B (eUV-B) radiation was investigated on biochemical, phytochemical, and antioxidative enzymatic activities of E. alba (Bhringraj) plant. The UV-B exposure resulted in an increase in oxidative stress, which has caused an imbalance in phytochemical, biochemical constituents, and induced antioxidative enzymatic activities. It was observed that the UV-B exposure promoted wedelolactone yield by 23.64%. Further, the leaf extract of UV-B-exposed plants was used for the synthesis of carbon quantum dots (CQDs) using low cost, one-step hydrothermal technique and its biocompatibility was studied using in vitro MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay on HepG2 liver cell line. It revealed no toxicity in any treatment groups in comparison to the control. Both CQDs and leaf extract were orally administered to the golden hamster suffering from alcohol-induced liver cirrhosis. In the morphometric study, it was clearly observed that a combination of UV-B-exposed leaf extract and synthesized CQDs delivered the best result with maximum recovery of liver tissues. The present study reveals the positive impact of UV-B exposure on the medicinally important plant, increased yield of wedelolactone, and its enhanced hepatoprotective efficacy for the treatment of damaged liver tissues.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, upon reasonable request.

References

  1. Chaudhary, N., Gupta, P.K., Eremin, S., Solanki, P.R., 2020. One-step green approach to synthesize highly fluorescent carbon quantum dots from banana juice for selective detection of copper ions. J. Environ. Chem. Eng. 8, 103720. https://doi.org/10.1016/j.jece.2020.103720

  2. Chokotia, L., Vashistha, P., Sironiya, R., & Matoli, H. (2013). Pharmacological Activities of Eclipta Alba(L.). Int. J. Res. Dev. Pharm. Life Sci., 2, 499–502.

    Google Scholar 

  3. Choudhary, K.K., Agrawal, S.B., 2015. Effect of elevated ultraviolet-B on four tropical soybean cultivars: quantitative and qualitative aspects with special emphasis on gas exchange, chlorophyll fluorescence, biomass and yield. Acta Physiol. Plant. 37. https://doi.org/10.1007/s11738-015-1780-4

  4. Cvetkovic, D., & Markovic, D. (2008). UV-induced changes in antioxidant capacities of selected carotenoids toward lecithin in aqueous solution. Radiation Physics and Chemistry, 77, 34–41. https://doi.org/10.1016/j.radphyschem.2007.02.078

    Article  CAS  Google Scholar 

  5. Czégény, G., Mátai, A., & Hideg, É. (2016). UV-B effects on leaves-Oxidative stress and acclimation in controlled environments. Plant Science, 248, 57–63. https://doi.org/10.1016/j.plantsci.2016.04.013

    Article  CAS  PubMed  Google Scholar 

  6. Doshi, K., Mungray, A.A., 2020. Bio-route synthesis of carbon quantum dots from tulsi leaves and its application as a draw solution in forward osmosis. J. Environ. Chem. Eng. 8, 104174. https://doi.org/10.1016/j.jece.2020.104174

  7. Feng, L., Zhai, Y.Y., Xu, J., Yao, W.F., Cao, Y.D., Cheng, F.F., Bao, B.H., Zhang, L., 2019. A review on traditional uses, phytochemistry and pharmacology of Eclipta prostrata (L.) L. J. Ethnopharmacol. https://doi.org/10.1016/j.jep.2019.112109

  8. Gouda, S., Kerry, R.G., Das, G., Patra, J.K., 2018. Synthesis of nanoparticles utilizing sources from the mangrove environment and their potential applications: An overview, in: Nanomaterials in Plants, Algae and Microorganisms: Concepts and Controversies: Volume 2. Academic Press, pp. 219–235. https://doi.org/10.1016/B978-0-12-811488-9.00011-1

  9. Guenné, S., Ouattara, N., Ouédraogo, N., Ciobica, A., Hilou, A., Kiendrebeógo, M., 2020. Phytochemistry and neuroprotective effects of Eclipta alba (L.) Hassk. J. Complement. Integr. Med. https://doi.org/10.1515/jcim-2019-0026

  10. Hamid, A., Singh, S., Agrawal, M., & Agrawal, S. B. (2019). Heteropogon contortus BL-1 (Pilli Grass) and Elevated UV-B Radiation: The Role of Growth, Physiological, and Biochemical Traits in Determining Forage Productivity and Quality. Photochemistry and Photobiology, 95, 572–580. https://doi.org/10.1111/php.12990

    Article  CAS  PubMed  Google Scholar 

  11. Iravani, S., & Varma, R. S. (2020). Green synthesis, biomedical and biotechnological applications of carbon and graphene quantum dots. A review. Environ. Chem. Lett., 18, 703–727. https://doi.org/10.1007/s10311-020-00984-0

    Article  CAS  PubMed  Google Scholar 

  12. Jaiswal, D., Agrawal, S.B., 2021. Ultraviolet-B induced changes in physiology, phenylpropanoid pathway, and essential oil composition in two Curcuma species (C. caesia Roxb. and C. longa L.). Ecotoxicol. Environ. Saf. 208, 111739. https://doi.org/10.1016/j.ecoenv.2020.111739

  13. Jaiswal, D., Pandey, A., Mukherjee, A., Agrawal, M., Agrawal, S.B., 2020. Alterations in growth, antioxidative defense and medicinally important compounds of Curcuma caesia Roxb. under elevated ultraviolet-B radiation. Environ. Exp. Bot. 177, 104152. https://doi.org/10.1016/j.envexpbot.2020.104152

  14. Jalil, S.U., Ansari, M.I., 2019. Nanoparticles and abiotic stress tolerance in plants: Synthesis, action, and signaling mechanisms, in: Plant Signaling Molecules: Role and Regulation under Stressful Environments. Elsevier, pp. 549–561. https://doi.org/10.1016/B978-0-12-816451-8.00034-4

  15. Jenkins, G. I. (2017). Photomorphogenic responses to ultraviolet-B light. Plant, Cell and Environment, 40, 2544–2557. https://doi.org/10.1111/pce.12934

    Article  CAS  PubMed  Google Scholar 

  16. K., A., U., B.,. (2011). Comparative study on Hepatoprotective activity of Aegle marmelos and Eclipta alba against alcohol induced in albino rats. International Journal of Environmental Sciences, 2, 389–402.

    Google Scholar 

  17. Król, A., Amarowicz, R., & Weidner, S. (2014). Changes in the composition of phenolic compounds and antioxidant properties of grapevine roots and leaves (vitis viniferal.) under continuous of long-term drought stress. Acta Physiologiae Plantarum, 36, 1491–1499. https://doi.org/10.1007/s11738-014-1526-8

    Article  CAS  Google Scholar 

  18. Li, Y., Xu, X., Wu, Y., Zhuang, J., Zhang, X., Zhang, H., Lei, B., Hu, C., & Liu, Y. (2020). A review on the effects of carbon dots in plant systems. Mater. Chem. Front., 4, 437–448. https://doi.org/10.1039/c9qm00614a

    Article  CAS  Google Scholar 

  19. Luo, Q., Ding, J., Zhu, L., Chen, F., & Xu, L. (2018). Hepatoprotective Effect of Wedelolactone against Concanavalin A-Induced Liver Injury in Mice. American Journal of Chinese Medicine, 46, 819–833. https://doi.org/10.1142/S0192415X1850043X

    Article  CAS  PubMed  Google Scholar 

  20. Mariz-Ponte, N., Mendes, R. J., Sario, S., Ferreira de Oliveira, J. M. P., Melo, P., & Santos, C. (2018). Tomato plants use non-enzymatic antioxidant pathways to cope with moderate UV-A/B irradiation: A contribution to the use of UV-A/B in horticulture. Journal of Plant Physiology, 221, 32–42. https://doi.org/10.1016/j.jplph.2017.11.013

    Article  CAS  PubMed  Google Scholar 

  21. Moharana, M., Pattanayak, S. K., & Khan, F. (2022). Identification of phytochemicals from Eclipta alba and assess their potentiality against Hepatitis C virus envelope glycoprotein: Virtual screening, docking, and molecular dynamics simulation study. Journal of Biomolecular Structure & Dynamics. https://doi.org/10.1080/07391102.2022.2085804

    Article  Google Scholar 

  22. Nasseri, M. A., Keshtkar, H., Kazemnejadi, M., & Allahresani, A. (2020). Phytochemical properties and antioxidant activity of Echinops persicus plant extract: Green synthesis of carbon quantum dots from the plant extract. SN Appl. Sci., 2, 1–12. https://doi.org/10.1007/s42452-020-2466-0

    Article  CAS  Google Scholar 

  23. Pandey, A., Jaiswal, D., Agrawal, S.B., 2021. Ultraviolet-B mediated biochemical and metabolic responses of a medicinal plant Adhatoda vasica Nees. at different growth stages. J. Photochem. Photobiol. B Biol. 216. https://doi.org/10.1016/j.jphotobiol.2021.112142

  24. Pazouki, L., & Niinemetst, U. (2016). Multi-substrate terpene synthases: Their occurrence and physiological significance. Frontiers in Plant Science, 7, 1–16. https://doi.org/10.3389/fpls.2016.01019

    Article  Google Scholar 

  25. Rai, K., Agrawal, S.B., 2021. An assessment of dose-dependent UV-B sensitivity in Eclipta alba : Biochemical traits , antioxidative properties , and wedelolactone yield.

  26. Rai, K., & Agrawal, S. B. (2020). Effect on essential oil components and wedelolactone content of a medicinal plant Eclipta alba due to modifications in the growth and morphology under different exposures of ultraviolet-B. Physiology and Molecular Biology of Plants, 26, 773–792. https://doi.org/10.1007/s12298-020-00780-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rani, H., Singh, S.P., Yadav, T.P., Khan, M.S., Ansari, M.I., Singh, A.K., 2020. In-vitro catalytic, antimicrobial and antioxidant activities of bioengineered copper quantum dots using Mangifera indica (L.) leaf extract. Mater. Chem. Phys. 239, 122052. https://doi.org/10.1016/j.matchemphys.2019.122052

  28. Richter, A., Schaff, C., Zhang, Z., Lipka, A. E., Tian, F., Köllner, T. G., Schnee, C., Preiß, S., Irmisch, S., Jander, G., Boland, W., Gershenzon, J., Buckler, E. S., & Degenhardt, J. (2016). Characterization of biosynthetic pathways for the production of the volatile homoterpenes DMNT and TMTT in zea mays. The Plant Cell, 28, 2651–2665. https://doi.org/10.1105/tpc.15.00919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sharath Shankar, S., Ramachandran, V., Raj, R.P., Sruthi, T. V., Sameer Kumar, V.B., 2020. Carbon quantum dots: A potential candidate for diagnostic and therapeutic application, in: Nanobiomaterial Engineering: Concepts and Their Applications in Biomedicine and Diagnostics. Springer Singapore, pp. 49–70. https://doi.org/10.1007/978-981-32-9840-8_3

  30. Sharma, S., Kataria, S., Joshi, J., & Guruprasad, K. N. (2019). Antioxidant defense response of fenugreek to solar UV. Int. J. Veg. Sci., 25, 40–57. https://doi.org/10.1080/19315260.2018.1466844

    Article  Google Scholar 

  31. Shukla, D., Das, M., Kasade, D., Pandey, M., Dubey, A.K., Yadav, S.K., Parmar, A.S., 2020. Sandalwood-derived carbon quantum dots as bioimaging tools to investigate the toxicological effects of malachite green in model organisms. Chemosphere 248, 125998. https://doi.org/10.1016/j.chemosphere.2020.125998

  32. Singh, A. K., Pal, P., Gupta, V., Yadav, T. P., Gupta, V., & Singh, S. P. (2018). Green synthesis, characterization and antimicrobial activity of zinc oxide quantum dots using Eclipta alba. Materials Chemistry and Physics, 203, 40–48. https://doi.org/10.1016/j.matchemphys.2017.09.049

    Article  CAS  Google Scholar 

  33. Sukumar, S., Rudrasenan, A., & Padmanabhan Nambiar, D. (2020). Green-Synthesized Rice-Shaped Copper Oxide Nanoparticles Using Caesalpinia bonducella Seed Extract and Their Applications. ACS Omega, 5, 1040–1051. https://doi.org/10.1021/acsomega.9b02857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Takshak, S., & Agrawal, S. B. (2019). Defense potential of secondary metabolites in medicinal plants under UV-B stress. Journal of Photochemistry and Photobiology, B: Biology, 193, 51–88. https://doi.org/10.1016/j.jphotobiol.2019.02.002

    Article  CAS  PubMed  Google Scholar 

  35. Takshak, S., & Bhushan Agrawal, S. (2018). Interactive effects of supplemental ultraviolet-B radiation and indole-3-acetic acid on Coleus forskohlii Briq.: Alterations in morphological-, physiological-, and biochemical characteristics and essential oil content. Ecotoxicology and Environmental Safety, 147, 313–326. https://doi.org/10.1016/j.ecoenv.2017.08.059

    Article  CAS  PubMed  Google Scholar 

  36. Ulm, R., & Jenkins, G. I. (2015). Q&A: How do plants sense and respond to UV-B radiation? BMC Biology, 13, 1–6. https://doi.org/10.1186/s12915-015-0156-y

    Article  CAS  Google Scholar 

  37. Vijayakumar, S., Vinayagam, R., Anand, M.A.V., Venkatachalam, K., Saravanakumar, K., Wang, M.H., Casimeer C, S., KM, G., David, E., 2020. Green synthesis of gold nanoparticle using Eclipta alba and its antidiabetic activities through regulation of Bcl-2 expression in pancreatic cell line. J. Drug Deliv. Sci. Technol. 58, 101786. https://doi.org/10.1016/j.jddst.2020.101786

  38. Wang, J., & Qiu, J. (2016). A review of carbon dots in biological applications. Journal of Materials Science. https://doi.org/10.1007/s10853-016-9797-7

    Article  PubMed  Google Scholar 

  39. World Health Organization, 2002. Global Solar UV Index - A Practical Guide. World Heal. Organ. 18.

  40. Yadav, K., Das, M., Hassan, N., Mishra, A., Lahiri, J., Dubey, A. K., Yadav, S. K., & Parmar, A. S. (2021). Synthesis and characterization of novel protein nanodots as drug delivery carriers with an enhanced biological efficacy of melatonin in breast cancer cells. RSC Advances, 11, 9076–9085. https://doi.org/10.1039/d0ra08959a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yadav, N.K., Arya, R.K., Dev, K., Sharma, C., Hossain, Z., Meena, S., Arya, K.R., Gayen, J.R., Datta, D., Singh, R.K., 2017. Alcoholic extract of eclipta alba shows in vitro antioxidant & anticancer activity without exhibiting toxicological effects. Oxid. Med. Cell. Longev. 2017. https://doi.org/10.1155/2017/9094641

  42. Yin, R., & Ulm, R. (2017). How plants cope with UV-B: From perception to response. Current Opinion in Plant Biology. https://doi.org/10.1016/j.pbi.2017.03.013

    Article  PubMed  Google Scholar 

  43. Zhang, W. J., & Björn, L. O. (2009). The effect of ultraviolet radiation on the accumulation of medicinal compounds in plants. Fitoterapia, 80, 207–218. https://doi.org/10.1016/j.fitote.2009.02.006

    Article  CAS  PubMed  Google Scholar 

  44. Zhao, X., Wang, L., Zhang, H., Zhang, D., Zhang, Z., & Zhang, J. (2017). Protective effect of artemisinin on chronic alcohol induced-liver damage in mice. Environmental Toxicology and Pharmacology, 52, 221–226. https://doi.org/10.1016/j.etap.2017.04.008

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Department of Science and Technology (DST-SERB), India- CRG/2019/000903 (Core Research Grant) & SB/S2/RJN-140/2014 (Ramanujan Fellowship Award). The authors are also very grateful to the Heads, Department of Botany, Zoology and IIT-Physics for providing necessary laboratory facilities during the experiments. Advanced Instrumentation Research Facility is acknowledged for providing GC-MS facility. Shashi Bhushan Agrawal is thankful to CSIR, New Delhi for providing Emeritus Scientist fellowship. Kshama Rai is thankful to the Coordinator, CAS in Botany, FIST (DST) for providing financial assistance, Institute of Life Sciences (BHU), Varanasi are also acknowledged for providing confocal microscopy facility and CSIR, New Delhi, for the financial support in the form of a research project (CSIR\P-25\365).

Funding

This work was supported by the Department of Science and Technology (DST-SERB), India- CRG/2019/000903 (Core Research Grant) & SB/S2/RJN-140/2014 (Ramanujan Fellowship Award) awarded to A.S.P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avanish Singh Parmar.

Ethics declarations

Conflict of interest

All the authors confirm that they have no competing or financial interest.

Ethical approval

Committee for the Purpose of Control and Supervision of Experiments on Animals (CPCSEA), Registration No.-1802/GO/Re/S/15/ CPCSEA.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 330 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rai, K., Yadav, K., Das, M. et al. Effect of carbon quantum dots derived from extracts of UV-B-exposed Eclipta alba on alcohol-induced liver cirrhosis in Golden Hamster. Photochem Photobiol Sci 22, 1543–1559 (2023). https://doi.org/10.1007/s43630-023-00396-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-023-00396-3

Keywords

Navigation