Skip to main content
Log in

Nanosponge-C3N4 composites as photocatalysts for selective partial alcohol oxidation in aqueous suspension

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

A set of four composite materials was prepared, consisting of a nanosponge matrix based on β-cyclodextrin in which carbon nitride was dispersed. The materials were characterized by the presence of diverse cross-linker units joining the cyclodextrin moieties, in order to vary the absorption/release abilities of the matrix. The composites were characterized and used as photocatalysts in aqueous medium under UV, visible and natural solar irradiation for the photodegradation of 4-nitrophenol, and for the selective partial oxidation of 5-hydroxymethylfurfural and veratryl alcohol to the corresponding aldehydes. The nanosponge-C3N4 composites showed higher activity than the pristine semiconductor, which can probably be attributed to the synergic effect of the nanosponge, capable of increasing the substrate concentration near the surface of the photocatalyst.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Bibliography

  1. Swaminathan, S., & Trotta, F. (2019). Cyclodextrin Nanosponges. In F. Trotta, A. Mele (Eds.) Nanosponges: Synthesis and Applications (pp. 27–57). Wiley‐VCH Verlag GmbH & Co. KGaA. https://doi.org/10.1002/9783527341009.ch2.

  2. Caldera, F., Tannous, M., Cavalli, R., Zanetti, M., & Trotta, F. (2017). Evolution of cyclodextrin nanosponges. International Journal of Pharmaceutics, 531, 470–479. https://doi.org/10.1016/j.ijpharm.2017.06.072

    Article  CAS  PubMed  Google Scholar 

  3. Lo Meo, P., Lazzara, G., Liotta, L., Riela, S., & Noto, R. (2014). Cyclodextrin–calixarene co-polymers as a new class of nanosponges. Polymer Chemistry, 5, 4499–4510. https://doi.org/10.1039/C4PY00325J

    Article  CAS  Google Scholar 

  4. Spinella, A., Russo, M., Di Vincenzo, A., Chillura Martino, D., & Lo Meo, P. (2018). Hyper-reticulated calixarene polymers: a new example of entirely synthetic nanosponge materials. Beilstein Journal of Organic Chemistry, 14, 1498–1507. https://doi.org/10.3762/bjoc.14.127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Szejtli, J. (1998). Introduction and general overview of cyclodextrin chemistry. Chemical Reviews, 98, 1743–1754. https://doi.org/10.1021/cr970022c

    Article  CAS  PubMed  Google Scholar 

  6. Del Valle, E. M. M. (2004). Cyclodextrins and their uses: a review. Process Biochemistry, 39, 1033–1046. https://doi.org/10.1016/S0032-9592(03)00258-9

    Article  CAS  Google Scholar 

  7. Matsui, Y., & Mochida, K. (1979). Binding forces contributing to the association of cyclodextrin with alcohol in an aqueous solution. Bulletin of the Chemical Society of Japan, 52, 2808–2814. https://doi.org/10.1246/bcsj.52.2808

    Article  CAS  Google Scholar 

  8. Rekharsky, M. V., & Inoue, Y. (1998). Complexation thermodynamics of cyclodextrins. Chemical Reviews, 98, 1875–1918. https://doi.org/10.1021/cr970015o

    Article  CAS  PubMed  Google Scholar 

  9. Liu, L., & Guo, Q.-X. (2002). The driving forces in the inclusion complexation of cyclodextrins. Journal of inclusion phenomena and macrocyclic chemistry, 42, 1–14. https://doi.org/10.1023/a:1014520830813

    Article  CAS  Google Scholar 

  10. Lo Meo, P., D’Anna, F., Gruttadauria, M., Riela, S., & Noto, R. (2004). Thermodynamics of binding between α- and β-cyclodextrins and some p-nitro-aniline derivatives: reconsidering the enthalpy–entropy compensation effect. Tetrahedron, 60, 9099–9111. https://doi.org/10.1016/j.tet.2004.07.079

    Article  CAS  Google Scholar 

  11. Lo Meo, P., D’Anna, F., Riela, S., Gruttadauria, M., & Noto, R. (2009). Binding equilibria between β-cyclodextrin and p-nitro-aniline derivatives: The first systematic study in mixed water-methanol solvent systems. Tetrahedron, 65, 2037–2042. https://doi.org/10.1016/j.tet.2009.01.008

    Article  CAS  Google Scholar 

  12. Danil de Namor, A. F., Cleverley, R. M., & Zapata-Ormachea, M. L. (1998). Thermodynamics of calixarene chemistry. Chemical Reviews, 98, 2495–2526. https://doi.org/10.1021/cr970095w

    Article  PubMed  Google Scholar 

  13. Mutihac, L., Buschmann, H. J., Mutihac, R. C., & Schollmeyer, E. (2005). Complexation and separation of amines, amino acids, and peptides by functionalized calix[n]arenes. Journal of Inclusion Phenomena, 51, 1–10. https://doi.org/10.1007/s10847-004-5098-x

    Article  CAS  Google Scholar 

  14. Sliwa, W., & Deska, M. (2008). Calixarene complexes with soft metal ions. ARKIVOC, 2008, 87–127. https://doi.org/10.3998/ark.5550190.0009.104

    Article  Google Scholar 

  15. Khan, A. R., Forgó, P., Stine, K. J., & D’Souza, V. T. (1998). Methods for selective modifications of cyclodextrins. Chemical Reviews, 98, 1977–1996. https://doi.org/10.1021/cr970012b

    Article  CAS  PubMed  Google Scholar 

  16. Van Loon, J. D., Arduini, A., Coppi, L., Verboom, W., Pochini, A., Ungaro, R., Harkema, S., & Reinhoudt, D. N. (1990). Selective functionalization of calix[4]arenes at the upper RIM. The Journal of Organic Chemistry, 55, 5639–5646. https://doi.org/10.1021/jo00308a024

    Article  Google Scholar 

  17. Cataldo, S., Lo Meo, P., Conte, P., Di Vincenzo, A., Milea, D., & Pettignano, A. (2021). Evaluation of adsorption ability of cyclodextrin-calixarene nanosponges towards Pb2+ ion in aqueous solution. Carbohydrate Polymers, 267, 118151. https://doi.org/10.1016/j.carbpol.2021.118151

    Article  CAS  PubMed  Google Scholar 

  18. Mamba, B. B., Krause, R. W., Malefetse, T. J., Gericke, G., & Sithole, S. P. (2009). Cyclodextrin nanosponges in the removal of organic matter for ultrapure water in power generation. Journal of Water Supply: Research and Technology - Aqua, 58, 299–304. https://doi.org/10.2166/aqua.2009.039

    Article  CAS  Google Scholar 

  19. Allahyari, S., Trotta, F., Valizadeh, H., Jelvehgari, M., & Zakeri-Milani, P. (2019). Cyclodextrin-based nanosponges as promising carriers for active agents. Expert Opinion on Drug Delivery, 16, 467–479. https://doi.org/10.1080/17425247.2019.1591365

    Article  CAS  PubMed  Google Scholar 

  20. Fontana, R. M., Milano, N., Barbara, L., Di Vincenzo, A., Gallo, G., & Lo Meo, P. (2019). Cyclodextrin-calixarene nanosponges as potential platforms for pH-dependent delivery of tetracycline. ChemistrySelect, 4, 9743–9747. https://doi.org/10.1002/slct.201902373

    Article  CAS  Google Scholar 

  21. Trotta, F., Dianzani, C., Caldera, F., Mognetti, B., & Cavalli, R. (2014). The application of nanosponges to cancer drug delivery. Expert Opinion on Drug Delivery, 11, 931–941. https://doi.org/10.1517/17425247.2014.911729

    Article  CAS  PubMed  Google Scholar 

  22. Di Vincenzo, A., Russo, M., Cataldo, S., Milea, D., Pettignano, A., & Lo Meo, P. (2019). Effect of pH variations on the properties of cyclodextrin-calixarene nanosponges. ChemistrySelect, 4, 6155–6161. https://doi.org/10.1002/slct.201901200

    Article  CAS  Google Scholar 

  23. Russo, M., Saladino, M. L., Chillura Martino, D., Lo Meo, P., & Noto, R. (2016). Polyaminocyclodextrin nanosponges: synthesis, characterization and pH-responsive sequestration abilities. RSC Advances, 6, 49941–49953. https://doi.org/10.1039/c6ra06417e

    Article  CAS  Google Scholar 

  24. Trotta, F., Caldera, F., Dianzani, C., Argenziano, M., Barrera, G., & Cavalli, R. (2016). Glutathione bioresponsive cyclodextrin nanosponges. ChemPlusChem, 81, 439–443. https://doi.org/10.1002/cplu.201500531

    Article  CAS  PubMed  Google Scholar 

  25. Li, H., Meng, B., Chai, S.-H., Liu, H., & Dai, S. (2016). Hyper-crosslinked β-cyclodextrin porous polymer: an adsorption-facilitated molecular catalyst support for transformation of water-soluble aromatic molecules. Chemical Science, 7, 905–909. https://doi.org/10.1039/C5SC04034E

    Article  CAS  PubMed  Google Scholar 

  26. Martin-Trasanco, R., Cao, R., Esparza-Ponce, H. E., Montero-Cabrera, M. E., & Arratia-Pérez, R. (2017). Reduction of Au(III) by a β-cyclodextrin polymer in acid medium. A stated unattainable reaction. Carbohydrate Polymers, 175, 530–537. https://doi.org/10.1016/j.carbpol.2017.08.013

    Article  CAS  PubMed  Google Scholar 

  27. Noel, S., Bourbiaux, D., Tabary, N., Ponchel, A., Martel, B., Monflier, E., & Leger, B. (2017). Acid-tolerant cyclodextrin-based ruthenium nanoparticles for the hydrogenation of unsaturated compounds in water. Catalysis Science & Technology, 7, 5982–5992. https://doi.org/10.1039/C7CY01687E

    Article  CAS  Google Scholar 

  28. Russo, M., Spinella, A., Di Vincenzo, A., Lazzara, G., Correro, M. R., Shahgaldian, P., Lo Meo, P., & Caponetti, E. (2019). Synergistic activity of silver nanoparticles and polyaminocyclodextrins in nanosponge architectures. ChemistrySelect, 4, 873–879. https://doi.org/10.1002/slct.201803424

    Article  CAS  Google Scholar 

  29. Wang, X., Maeda, K., Thomas, A., Takanabe, K., Xin, G., Carlsson, J. M., Domen, K., & Antonietti, M. (2009). A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nature Materials, 8, 76–80. https://doi.org/10.1038/nmat2317

    Article  CAS  PubMed  Google Scholar 

  30. Marcì, G., García-López, E. I., & Palmisano, L. (2018). Polymeric carbon nitride (C3N4) as heterogeneous photocatalyst for selective oxidation of alcohols to aldehydes. Catalysis Today, 315, 126–137. https://doi.org/10.1016/j.cattod.2018.03.038

    Article  CAS  Google Scholar 

  31. Krivtsov, I., García-López, E. I., Marcì, G., Palmisano, L., Amghouz, Z., García, J. R., Ordóñez, S., & Díaz, E. (2017). Selective photocatalytic oxidation of 5-hydroxymethyl-2-furfural to 2,5-furandicarboxyaldehyde in aqueous suspension of g-C3N4. Applied Catalysis B: Environmental, 204, 430–439. https://doi.org/10.1016/j.apcatb.2016.11.049

    Article  CAS  Google Scholar 

  32. Ilkaeva, M., Krivtsov, I., García, J. R., Díaz, E., Ordóñez, S., García-López, E. I., Marcì, G., Palmisano, L., Maldonado, M. I., & Malato, S. (2018). Selective photocatalytic oxidation of 5-hydroxymethyl-2-furfural in aqueous suspension of polymeric carbon nitride and its adduct with H2O2 in a solar pilot plant. Catalysis Today, 315, 138–148. https://doi.org/10.1016/j.cattod.2018.03.013

    Article  CAS  Google Scholar 

  33. Krivtsov, I., Ilkaeva, M., García López, E. I., Marcì, G., Palmisano, L., Bartashevich, E., Grigoreva, E., Matveeva, K., Díaz Fernández, E., & Ordóñez García, S. (2019). Effect of substituents on partial photocatalytic oxidation of aromatic alcohols assisted by polymeric C3N4. ChemCatChem, 11, 2713–2724. https://doi.org/10.1002/cctc.201900362

    Article  CAS  Google Scholar 

  34. Ilkaeva, M., Krivtsov, I., García-López, E., Marcì, G., Khainakova, O., García, J., Palmisano, L., Díaz, E., & Ordóñez, S. (2018). Selective photocatalytic oxidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxaldehyde by polymeric carbon nitride-hydrogen peroxide adduct. Journal of Catalysis, 359, 212–222. https://doi.org/10.1016/j.jcat.2018.01.012

    Article  CAS  Google Scholar 

  35. Garcia-Lopez, E. I., Abbasi, Z., Di Franco, F., Santamaria, M., Marcì, G., & Palmisano, L. (2021). Selective oxidation of aromatic alcohols in the presence of C3N4 photocatalysts derived from the polycondensation of melamine, cyanuric and barbituric acids. Research on Chemical Intermediates, 47, 131–156. https://doi.org/10.1007/s11164-020-04330-5

    Article  CAS  Google Scholar 

  36. Augugliaro, V., Palmisano, L., Schiavello, M., & Sclafani, A. (1986). Photodecomposition of adsorbed ethanoic acid over silica gel catalyst in a flow system. Journal of Catalysis, 99, 62–71. https://doi.org/10.1016/0021-9517(86)90198-3

    Article  CAS  Google Scholar 

  37. Sclafani, A., Palmisano, L., Schiavello, M., Augugliaro, V., Coluccia, S., & Marchese, L. (1988). The photodecomposition of ethanoic acid adsorbed over semiconductor and insulator oxides. Part 1. pure oxides. New Journal of Chemistry, 12, 129–135.

    CAS  Google Scholar 

  38. Gondal, M. A., Chang, X., Ali, M. A., Yamani, Z. H., Zhou, Q., & Ji, G. (2011). Adsorption and degradation performance of Rhodamine B over BiOBr under monochromatic 532 nm pulsed laser exposure. Applied Catalysis, A: General, 397, 192–200. https://doi.org/10.1016/j.apcata.2011.02.033

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Leonardo Palmisano or Giuseppe Marcì.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5105 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García-López, E.I., Arcidiacono, F., Di Vincenzo, A. et al. Nanosponge-C3N4 composites as photocatalysts for selective partial alcohol oxidation in aqueous suspension. Photochem Photobiol Sci 22, 1517–1526 (2023). https://doi.org/10.1007/s43630-023-00394-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-023-00394-5

Keywords

Navigation