Skip to main content

Advertisement

Log in

Construction of Co3O4 nanopolyhedra with rich oxygen vacancies from ZIF-67 for efficient photocatalytic nitrogen fixation

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Photocatalytic nitrogen fixation has attracted much attention due to the fact that it is a way of using solar energy to achieve clean and sustainable conversion of nitrogen to ammonia under mild conditions. In this paper, different proportions of Zn-doped Co3O4 nanopolyhedrons were synthesized using bimetallic ZIFs containing Co2+ and Zn2+ as precursors for the construction of photocatalytic nitrogen fixation semiconductor materials for the first time. The synthesized Co3O4 nano-polyhedron still retains the rhombic dodecahedron shape of ZIF-67 and exhibits a large specific surface area. Moreover, Zn doping results in abundant oxygen vacancies on the surface of Co3O4 polyhedron. These oxygen vacancies not only provide active sites for nitrogen adsorption and activation, but also enhance the separation ability of photocarriers, which can significantly improve the efficiency of photocatalytic nitrogen fixation of the material. When Zn–Co3O4-30 is utilized as the catalyst for photocatalytic nitrogen fixation, the nitrogen fixation rate is 96.8 μmol g−1 h−1, which is much higher than that of pure-Co3O4. In this study, heteroatom-doped Co3O4 polyhedron with rich oxygen vacancy was synthesized by low-temperature oxidation method, which provides a new idea for the design and synthesis of skeleton-based photocatalytic nitrogen fixation materials.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the results of this study are available in the article.

References

  1. Zhao, Y., Zhao, Y., Shi, R., Wang, B., Waterhouse, G. I. N., & Wu, L. Z. (2019). Tuning oxygen vacancies in ultrathin TiO2 nanosheets to boost photocatalytic nitrogen fixation up to 700 nm. Advanced Materials, 31, 1806482.

    Article  Google Scholar 

  2. Wang, L., Li, M., Zhang, Q., Li, F., & Xu, L. (2021). Constructing electron transfer pathways and active centers over W18O49 nanowires by doping Fe3+ and incorporating g-C3N5 for enhanced photocatalytic nitrogen fixation. Inorganic Chemistry Frontiers, 8, 3566–3575.

    Article  CAS  Google Scholar 

  3. Li, H., Shang, J., Ai, Z., & Zhang, L. (2015). Efficient visible light nitrogen fixation with BiOBr nanosheets of oxygen vacancies on the exposed (Liu et al.) facets. Journal of the American Chemical Society, 137, 6393–6399.

    Article  CAS  PubMed  Google Scholar 

  4. Wang, L., Zhang, Q., Wei, T., Li, F., Sun, Z., & Xu, L. (2021). WC and cobalt nanoparticles embedded in nitrogen-doped carbon 3D nanocage derived from H3PW12O40@ZIF-67 for photocatalytic nitrogen fixation. Journal of Materials Chemistry A, 9, 2912–2918.

    Article  CAS  Google Scholar 

  5. Xue, X., Chen, R., Yan, C., Hu, Y., Zhang, W., & Yang, S. (2019). Efficient photocatalytic nitrogen fixation under ambient conditions enabled by the heterojunctions of n-type Bi2MoO6 and oxygen-vacancy-rich p-type BiOBr. Nanoscale, 11, 10439–10445.

    Article  CAS  PubMed  Google Scholar 

  6. Luo, J., Bai, X., Li, Q., Yu, X., Li, C., & Wang, Z. (2019). Band structure engineering of bioinspired Fe doped SrMoO4 for enhanced photocatalytic nitrogen reduction performance. Nano Energy, 66, 104187.

    Article  CAS  Google Scholar 

  7. Banerjee, A., Yuhas, B. D., Margulies, E. A., Zhang, Y., Shim, Y., & Wasielewski, M. R. (2015). Photochemical nitrogen conversion to ammonia in ambient conditions with FeMoS-chalcogels. Journal of the American Chemical Society, 137, 2030–2034.

    Article  CAS  PubMed  Google Scholar 

  8. Xu, J., Fujitsuka, M., Kim, S., Wang, Z., & Majima, T. (2019). Unprecedented effect of CO2 calcination atmosphere on photocatalytic H2 production activity from water using g-C3N4 synthesized from triazole polymerization. Applied Catalysis B, 241, 141–148.

    Article  CAS  Google Scholar 

  9. Tian, J., Hao, P., Wei, N., Cui, H., & Liu, H. (2015). 3D Bi2MoO6 nanosheet/TiO2 nanobelt heterostructure: Enhanced photocatalytic activities and photoelectochemistry performance. ACS Catalysis, 5, 4530–4536.

    Article  CAS  Google Scholar 

  10. Li, H., Mao, C., Shang, H., Yang, Z., Ai, Z., & Zhang, L. (2018). New opportunities for efficient N2 fixation by nanosheet photocatalysts. Nanoscale, 10, 15429–15435.

    Article  CAS  PubMed  Google Scholar 

  11. Yang, J., Zhang, F., Lu, H., Hong, X., Jiang, H., & Wu, Y. (2015). Hollow Zn/Co ZIF particles derived from core-shell ZIF-67@ZIF-8 as selective catalyst for the semi-hydrogenation of acetylene. Angewandte Chemie. International Ed in English, 54, 10889–10893.

    Article  CAS  PubMed  Google Scholar 

  12. Saliba, D., Ammar, M., Rammal, M., Al-Ghoul, M., & Hmadeh, M. (2018). Crystal growth of ZIF-8, ZIF-67, and their mixed-metal derivatives. Journal of the American Chemical Society, 140, 1812–1823.

    Article  CAS  PubMed  Google Scholar 

  13. Liu, S., Teng, Z., Liu, H., Wang, T., Wang, G., Xu, Q., & Pang, H. (2022). A Ce-UiO-66 Metal-Organic Framework-Based graphene-embedded photocatalyst with controllable activation for solar ammonia fertilizer production. Angewandte Chemie, 134(37), e202207026.

    Article  Google Scholar 

  14. Wang, L., & Øien, A. (1986). Determination of kjeldahl nitrogen and exchangeable ammonium in soil by the indophenol method. Acta Agriculturae Scandinavica, 36, 60–70.

    Article  CAS  Google Scholar 

  15. Mitic, V., Nikolic, S., & Stankov-Jovanovic, V. (2010). Kinetic spectrophotometric determination of hydrazine. Open Chemistry, 8, 559–565.

    Article  CAS  Google Scholar 

  16. Xiang, K., Xu, Z., Qu, T., Tian, Z., Zhang, Y., & Wang, Y. (2017). Two dimensional oxygen-vacancy-rich Co3O4 nanosheets with excellent supercapacitor performances. Chemical Communications, 53, 12410–12413.

    Article  CAS  PubMed  Google Scholar 

  17. Wen, L., Li, X., Zhang, R., Liang, H., Zhang, Q., & Su, C. (2021). Oxygen vacancy engineering of MOF-derived Zn-doped Co3O4 nanopolyhedrons for enhanced electrochemical nitrogen fixation. ACS Applied Materials and Interfaces, 13, 14181–14188.

    Article  CAS  PubMed  Google Scholar 

  18. Cai, Z., Bi, Y., Hu, E., Liu, W., Dwarica, N., & Tian, Y. (2017). Single-Crystalline ultrathin Co3O4 nanosheets with massive vacancy defects for enhanced electrocatalysis. Advanced Energy Materials, 8, 17016948.

    Google Scholar 

  19. Xu, L., Jiang, Q., Xiao, Z., Li, X., Huo, J., & Wang, S. (2016). Plasma-engraved Co3O4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction. Angewandte Chemie. International Ed in English, 55, 5277–5281.

    Article  CAS  PubMed  Google Scholar 

  20. Xue, Z. H., Zhang, S. N., Lin, Y. X., Su, H., Zhai, G. Y., & Han, J. T. (2019). Electrochemical reduction of N2 into NH3 by donor-acceptor couples of Ni and Au nanoparticles with a 67.8% faradaic efficiency. Journal of the American Chemical Society, 141, 14976–14980.

    Article  CAS  PubMed  Google Scholar 

  21. Hou, C., Hou, Y., Fan, Y., Zhai, Y., Wang, Y., & Sun, Z. (2018). Oxygen vacancy derived local build-in electric field in mesoporous hollow Co3O4 microspheres promotes high-performance Li-ion batteries. Journal of Materials Chemistry A, 6, 6967–6976.

    Article  CAS  Google Scholar 

  22. Zhang, Y., Feng, L., Zhan, W., Li, S., Li, Y., & Ren, X. (2020). Co3O4 hollow porous nanospheres with oxygen vacancies for enhanced LiO2 Batteries. ACS Applied Energy Materials, 3, 4014–4022.

    Article  CAS  Google Scholar 

  23. Wang, L., Wan, J., Zhao, Y., Yang, N., & Wang, D. (2019). Hollow multi-shelled structures of Co3O4 dodecahedron with unique crystal orientation for enhanced photocatalytic CO2 reduction. Journal of the American Chemical Society, 141, 2238–2241.

    Article  CAS  PubMed  Google Scholar 

  24. Choudhury, B., Dey, M., & Choudhury, A. (2013). Defect generation, dd transition, and band gap reduction in Cu-doped TiO2 nanoparticles. International Nano Letters, 3, 1–8.

    Article  CAS  Google Scholar 

  25. Yang, L., Wu, T., Zhang, R., Zhou, H., Xia, L., & Shi, X. (2019). Insights into defective TiO2 in electrocatalytic N2 reduction: Combining theoretical and experimental studies. Nanoscale, 11, 1555–1562.

    Article  CAS  PubMed  Google Scholar 

  26. Wang, X., Li, T.-T., & Zheng, Y.-Q. (2018). Co3O4 nanosheet arrays treated by defect engineering for enhanced electrocatalytic water oxidation. International Journal of Hydrogen Energy, 43, 2009–2017.

    Article  CAS  Google Scholar 

  27. Wang, L., Wang, S., Li, M., Yang, X., Li, F., & Xu, L. (2022). Constructing oxygen vacancies and linker defects in MIL-125 @TiO2 for efficient photocatalytic nitrogen fixation. Journal of Alloys and Compounds, 909, 164751.

    Article  CAS  Google Scholar 

  28. Zhu, C., Zhu, M., & Sun, Y. (2019). Carbon-supported oxygen vacancy-rich Co3O4 for robust photocatalytic H2O2 production via coupled water oxidation and oxygen reduction reaction. ACS Applied Energy Materials, 2, 8737–8746.

    Article  CAS  Google Scholar 

  29. Liu, L., Liu, J., Sun, K., Wan, J., Fu, F., & Fan, J. (2021). Novel phosphorus-doped Bi2WO6 monolayer with oxygen vacancies for superior photocatalytic water detoxication and nitrogen fixation performance. Chemical Engineering Journal, 411, 128629.

    Article  CAS  Google Scholar 

  30. Xuan, X., Tu, S., Yu, H., Du, X., Zhao, Y., & He, J. (2019). Size-dependent selectivity and activity of CO2 photoreduction over black nano-titanias grown on dendritic porous silica particles. Applied Catalysis B, 255, 117768.

    Article  CAS  Google Scholar 

  31. Han, B., Song, J., Liang, S., Chen, W., Deng, H., & Ou, X. (2020). Hierarchical NiCo2O4 hollow nanocages for photoreduction of diluted CO2: Adsorption and active sites engineering. Applied Catalysis B, 260, 118–208.

    Article  Google Scholar 

  32. `Swain, G., Sultana, S., & Parida, K. (2019). One-Pot-architectured Au-nanodot-promoted MoS2/ZnIn2S4: A novel p–n heterojunction photocatalyst for enhanced hydrogen production and phenol degradation. Inorganic Chemistry, 58, 9941–9955.

    Article  PubMed  Google Scholar 

  33. Cai, Y. Y., Li, X. H., & Zhang, Y. N. (2013). Highly efficient dehydrogenation of formic acid over a palladium-nanoparticle-based mott-schottky photocatalyst. Angewandte Chemie, 125, 12038–12041.

    Article  Google Scholar 

  34. Ke, J., Liu, J., Sun, H., Zhang, H., Duan, X., & Liang, P. (2017). Facile assembly of Bi2O3/Bi2S3/MoS2 n-p heterojunction with layered n-Bi2O3 and p-MoS2 for enhanced photocatalytic water oxidation and pollutant degradation. Applied Catalysis B, 200, 47–55.

    Article  CAS  Google Scholar 

  35. Hao, X., Xiang, D., & Jin, Z. (2021). Amorphous Co3O4 quantum dots hybridizing with 3D hexagonal CdS single crystals to construct a 0D/3D p-n heterojunction for a highly efficient photocatalytic H2 evolution. Dalton Transactions, 50, 10501–10514.

    Article  CAS  PubMed  Google Scholar 

  36. Jiao, S., Fu, X., Zhang, L., Zeng, Y.-J., & Huang, H. (2020). Point-defect-optimized electron distribution for enhanced electrocatalysis: Towards the perfection of the imperfections. Nano Today, 31, 100833.

    Article  CAS  Google Scholar 

  37. Liu, Y., Li, Q., Guo, X., Kong, X., Ke, J., & Chi, M. (2020). A highly efficient metal-free electrocatalyst of f-doped porous carbon toward N2 electroreduction. Advanced Materials, 32, 1907690.

    Article  CAS  Google Scholar 

  38. Luo, S., Li, X., Zhang, B., Luo, Z., & Luo, M. (2019). MOF-Derived Co3O4@NC with core-shell structures for N2 electrochemical reduction under ambient conditions. ACS Applied Materials and Interfaces, 11, 26891–26897.

    Article  CAS  PubMed  Google Scholar 

  39. Yao, X., Zhang, W., Huang, J., Du, Z., Hong, X., & Chen, X. (2020). Enhanced photocatalytic nitrogen fixation of Ag/B-doped g-C3N4 nanosheets by one-step in-situ decomposition-thermal polymerization method. Applied Catalysis A, 601, 117647.

    Article  CAS  Google Scholar 

  40. Pan, Y., Li, D., & Jiang, H. L. (2018). Sodium-Doped C3N4/MOF heterojunction composites with tunable band structures for photocatalysis: Interplay between light harvesting and electron transfer. Chemistry, 24, 18403–18407.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This project was financially supported by the Natural Science Foundation of China (Grant No. 22071018), and the Natural Science Foundation of Jilin Province (No. 20220101069JC).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fengyan Li or Lin Xu.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3193 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Wang, L., Li, F. et al. Construction of Co3O4 nanopolyhedra with rich oxygen vacancies from ZIF-67 for efficient photocatalytic nitrogen fixation. Photochem Photobiol Sci 22, 1233–1243 (2023). https://doi.org/10.1007/s43630-023-00364-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-023-00364-x

Keywords

Navigation