Skip to main content

Advertisement

Log in

Photocatalytic evaluation and characterization of TiO2-riboflavin phosphate film: analysis of reactive oxygen species

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The effect of Riboflavin-5′-phosphate (RFPO4) sensitization on photocatalytic properties of TiO2 film was studied. RFPO4 was adsorbed on film surface to investigate the photophysical properties of TiO2 upon blue-light photoexcitation. The film was characterized through scanning electron microscopy, energy dispersive spectroscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, thermogravimetric analysis, and diffuse reflectance spectroscopy. The efficiency of the TiO2/RFPO4 film was tested for pollutant elimination in aqueous media in a visible-light-driven system. The phenol paradigmatic model was employed in an aqueous solution as a contaminant target. TiO2/RFPO4 sensitized photodegradation of phenol, which produces catechol, hydroquinone, and benzophenone, was monitored by absorption spectroscopy and HPLC. The results indicated that phenol degradation with TiO2/RFPO4 film was due to the photogeneration of two reactive oxygen species, singlet molecular oxygen (O2(1Δg)) and superoxide radical anion (O2·–) identified through specific detection techniques. The presence of O2(1Δg) is reported here for the first time as generated from a sensitized TiO2 film upon visible-light photoirradiation. Based on the photophysical determinations, a photocatalytic mechanism for TiO2/RFPO4 was established.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig.4
Fig. 5
Scheme 2
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Wu, J., Cao, Y., Young, B., Yuen, Y., Jiang, S., Melendez, D., & Stewart, R. (2016). Decay of coliphages in sewage-contaminated freshwater: Uncertainty and seasonal effects. Environmental Sciences, 50, 11593–11601.

    CAS  Google Scholar 

  2. Yeganeh, M., Charkhloo, E., Sobhi, H., Esrafili, A., & Gholami, M. (2022). Photocatalytic processes associated with degradation of pesticides in aqueous solutions: Systematic review and meta-analysis. Chemical Engineering Journal, 428, 130081.

    Article  CAS  Google Scholar 

  3. Gavrilescu, M., Demnerová, K., Aamand, J., Agathos, S., & Fava, F. (2015). Emerging pollutants in the environment: Present and future challenges in biomonitoring, ecological risks and bioremediation. New Biotechnology, 32, 147–156.

    Article  CAS  PubMed  Google Scholar 

  4. Oturan, M. A., & Aaron, J. J. (2014). Advanced oxidation processes in water/wastewater treatment: principles and applications, A review. Critical Reviews in Environment Science and Technology, 44, 2577–2641.

    Article  CAS  Google Scholar 

  5. Gatica, E., Possetto, D., Reynoso, A., Natera, J., Miskoski, S., De Geronimo, E., Bregliani, M., Pajares, A., & Massad, W. (2019). Photo-fenton and riboflavin-photosensitized processes of the isoxaflutole herbicide. Photochem. and Photobiology, 95, 901–908.

    Article  CAS  Google Scholar 

  6. Babu, D. S., Srivastava, V., Nidheesh, P. V., & Suresh Kumar, M. (2019). Detoxification of water and wastewater by advanced oxidation processes. Science of the Total Environment, 696, 133961.

    Article  CAS  Google Scholar 

  7. Daghrir, R., Drogui, P., & Robert, D. (2013). Modified TiO2 for environmental photocatalytic applications: A review. Industrial and Engineering Chemistry Research, 52, 3581–3599.

    Article  CAS  Google Scholar 

  8. Ahmed, M. A., Abou-Gamra, Z. M., Medien, H. A., & Hamza, M. A. (2017). Effect of porphyrin on photocatalytic activity of TiO2 nanoparticles toward Rhodamine B photodegradation. Journal of Photochemistry and Photobiology B, 176, 25–35.

    Article  CAS  Google Scholar 

  9. Kaushik, R., Samal, P. K., & Halder, A. (2019). Degradation of fluoroquinolone-based pollutants and bacterial inactivation by visible-light-active aluminum-doped TiO2 nanoflakes. ACS Applied Nano Materials, 2, 7898–7909.

    Article  CAS  Google Scholar 

  10. Belver, C., Bedia, J., Álvarez-Montero, M. A., & Rodriguez, J. J. (2016). Solar photocatalytic purification of water with Ce-doped TiO2 /clay heterostructures. Catalysis Today, 266, 36–45.

    Article  CAS  Google Scholar 

  11. Yu, W., Liu, X., Pan, L., Li, J., Liu, J., Zhang, J., Li, P., Chen, C., & Sun, Z. (2014). Enhanced visible light photocatalytic degradation of methylene blue by F-doped TiO2. Applied Surface Science, 319, 107–112.

    Article  CAS  Google Scholar 

  12. Vaiano, V., Sacco, O., Sannino, D., & Ciambelli, P. (2015). Photocatalytic removal of spiramycin from wastewater under visible light with N-doped TiO2 photocatalysts. Chemical Engineering Journal, 261, 3–8.

    Article  CAS  Google Scholar 

  13. Mei, P., Wang, H., Guo, H., Zhang, N., Ji, S., Ma, Y., Xu, J., Li, Y., Alsulami, H., & Alhodaly, M. S. (2020). The enhanced photodegradation of bisphenol A by TiO2/C3N4 composites. Environmental Research, 182, 109090.

    Article  CAS  PubMed  Google Scholar 

  14. Zhao, J., Chen, C., & Ma, W. (2005). Photocatalytic degradation of organic pollutants under visible light irradiation. Topics in Catalysis, 35, 269–278.

    Article  CAS  Google Scholar 

  15. Vallejo, W., Diaz-Uribe, C., & Cantillo, Á. (2015). Methylene blue photocatalytic degradation under visible irradiation on TiO2 thin films sensitized with Cu and Zn tetracarboxy-phthalocyanines. Journal of Photochemistry and Photobiology A, 299, 80–86.

    Article  CAS  Google Scholar 

  16. Liu, X., Li, Y., Peng, S., Gongxuan, Lu., & Li, S. (2013). Photosensitization of SiW11O398- modified TiO2 by Eosin Y for stable visible-light H2 generation. International Journal of Hydrogen Energy, 38, 11709–11719.

    Article  CAS  Google Scholar 

  17. Liu, X., Li, Y., Peng, S., Gongxuan, Lu., & Li, S. (2012). Photocatalytic hydrogen evolution under visible light irradiation by the polyoxometalate α-[AlSiW11(H2O)O39]5- -eosin Y system. International Journal of Hydrogen Energy, 37, 12150–12157.

    Article  CAS  Google Scholar 

  18. Junying, Xu., Li, Y., & Peng, S. (2015). Photocatalytic hydrogen evolution over erythrosin B-sensitized graphitic carbon nitride with in situ grown molybdenum sulfide cocatalyst. International Journal of Hydrogen Energy, 40, 353–362.

    Article  Google Scholar 

  19. Zangeneh, H., Zinatizadeh, A. A., Habibi, M., Akia, M., & Hasnain Isa, M. (2015). Photocatalytic oxidation of organic dyes and pollutants in wastewater using different modified titanium dioxides: A comparative review. Journal of Industrial and Engineering Chemistry, 26, 1–36.

    Article  CAS  Google Scholar 

  20. Etacheria, V., Di Valentin, C., Schneider, J., Bahnemann, D., & Pillaif, S. C. (2015). Visible-light activation of TiO2 photocatalysts: Advances in theory and experiments. Journal of Photochemistry and Photobiology C, 25, 1–29.

    Article  Google Scholar 

  21. Hedayati, K., Azarakhsh, S., Saffari, J., & Ghanbari, D. (2016). Photo catalyst CoFe2O4–CdS nanocomposites for degradation of toxic dyes: Investigation of coercivity and magnetization. Journal of Materials Science, 27, 8758–8770.

    CAS  Google Scholar 

  22. Goodarzi, M., Joukar, S., Ghanbari, D., & Hedayati, K. (2017). CaFe2O4–ZnO magnetic nanostructures: Photo-degradation of toxic azo-dyes under UV irradiation. Journal of Materials Science: Materials in Electronics, 28, 12823–12838.

    CAS  Google Scholar 

  23. Pava-Gómez, B., Vargas-Ramírez, X., Díaz-Uribe, C., Romero, H., & Duran, F. (2021). Evaluation of copper-doped TiO2 film supported on glass and LDPE with the design of a pilot-scale solar photoreactor. Solar Energy, 220, 695–705.

    Article  Google Scholar 

  24. Momzikoff, A. (1983). A study of the photosensitizing properties of seawater. Marine Chem., 12, 1–14.

    Article  CAS  Google Scholar 

  25. Escalada, J. P., Pajares, A., Gianotti, J., Massad, W., Bertolotti, S., Amat-Guerri, F., & Garcia, N. A. (2006). Dye-sensitized photodegradation of the fungicide carbendazim and related benzimidazoles. Chemosphere, 65, 237–244.

    Article  CAS  PubMed  Google Scholar 

  26. Shinohara, H., Gratzel, M., Vlachopoulos, N., & Aizawa, M. (1991). Interfacial electron transfer of flavin coenzymes and riboflavin adsorbed on textured TiO2 films. Bioelectrochemistry and Bioenergetics, 26, 307–320.

    Article  CAS  Google Scholar 

  27. Chaudhuri, S., Sardar, S., Bagchi, D., Singha, S. S., Lemmens, P., & Kumar Pal, S. (2015). Sensitization of an endogenous photosensitizer: electronic spectroscopy of riboflavin in the proximity of semiconductor, insulator and metal nanoparticles. Journal of Physical Chemistry A, 119, 4162–4169.

    Article  CAS  PubMed  Google Scholar 

  28. Kathiravan, A., & Renganathan, R. (2008). Photoinduced interaction between riboflavin and TiO2 colloid. Spectrochimica Acta Part A, 71, 1080–1083.

    Article  CAS  Google Scholar 

  29. Khodabakhsh, S., Alaie, E., Taghavi, L., & Samiee, L. (2020). Comparing nanocomposites of TiO2/SBA-15 and TiO2/GO for removal of phenol out of aqueous solutions. Iranian Journal of Chemistry and Chemical Engineering, 39, 121–130.

    CAS  Google Scholar 

  30. Kontos, A. I., Kontos, A. G., Tsoukleris, D. S., Bernard, M.-C., Spyrellis, N., & Falaras, P. (2008). Nanostructured TiO2 films for DSSCS prepared by combining doctor-blade and sol–gel techniques. Journal of Materials Processing Technology, 196, 243–248.

    Article  CAS  Google Scholar 

  31. Su Min, K., Kumar, R. S., Lee, J. H., Kim, K. S., Lee, S. G., & Son, Y. (2019). Synthesis of new TiO2/Porphyrin-based composites and photocatalytic studies on methylene blue degradation. Dyes and Pigments, 160, 37–47.

    Article  Google Scholar 

  32. Korosi, L., & Dekany, I. (2006). Preparation and investigation of structural and photocatalytic properties of phosphate modified titanium dioxide. Colloids and Surfaces A, 280, 146–154.

    Article  Google Scholar 

  33. Konstantin, I., & Davydov, A. (1989). Study of phosphate-modified TiO2 (anatase). Journal of Catalysis, 116, 498–505.

    Article  Google Scholar 

  34. Kubota, L. T., Gorton, L., Roddick-Lanzilotta, A., & McQuillan, A. J. (1998). Electrochemical behaviour of FAD and FMN immobilised on TiO2 modified carbon fibres supported by ATR-IR spectroscopy of FMN on TiO2. Bioelectrochemistry and Bioenergetics, 47, 39–46.

    Article  CAS  Google Scholar 

  35. Connor, P., & McQuillan, A. J. (1999). Phosphate adsorption onto TiO2 from aqueous solutions: An in situ internal reflection infrared spectroscopic study. Langmuir, 15, 2916–2921.

    Article  CAS  Google Scholar 

  36. Jing, L., Zhou, J., & Durrant, J. R. (2012). Dynamics of photogenerated charges in the phosphate modified TiO2 and the enhanced activity for photoelectrochemical water splitting. Energy and Environmental Science, 5, 6552–6558.

    Article  CAS  Google Scholar 

  37. Liu, X., Li, Y., & Peng, S. (2013). Modification of TiO2 with sulfate and phosphate for enhanced eosin Y-sensitized hydrogen evolution under visible light illumination. Photochemical and Photobiological Sciences, 12, 1903–1910.

    Article  CAS  PubMed  Google Scholar 

  38. Ju, S., & Papadimitrakopoulos, F. (2008). Synthesis and redox behavior of flavin mononucleotide-functionalized single-walled carbon nanotubes. Journal of the American Chemical Society, 130, 655–664.

    Article  CAS  PubMed  Google Scholar 

  39. Mahlambi, M. M., Mishra, A. K., Mishra, S. B., Krause, R. W., Mamba, B. B., & Raichur, A. M. (2012). Comparison of rhodamine B degradation under UV irradiation by two phases of titania nano-photocatalyst. Journal of Thermal Analysis and Calorimetry, 110, 847–855.

    Article  CAS  Google Scholar 

  40. Masłowska, J., & Malicka, M. (1988). Thermal behaviour of riboflavin. Journal of Thermal Analysis, 34, 3–9.

    Article  Google Scholar 

  41. Tachikawa, T., Tojo, S., Kawai, K., Endo, M., Fujitsuka, M., Ohno, T., & Majima, T. (2004). Photocatalytic oxidation reactivity of holes in the sulfur-and carbon-doped TiO2 powders studied by time-resolved diffuse reflectance spectroscopy. The Journal of Physical Chemistry B, 108, 19299–19306.

    Article  CAS  Google Scholar 

  42. Umebayashi, T., Yamaki, T., Itoh, H., & Asai, K. (2002). Band gap narrowing of titanium dioxide by sulfur doping. Applied Physics Letters, 81, 454–456.

    Article  CAS  Google Scholar 

  43. Richard, S., & Rivlin, M. D. (2012). Riboflavin. Springer Science & Business Media.

    Google Scholar 

  44. Gaya, U. I., & Abdullaha, A. H. (2008). Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems. Journal of Photochemistry and Photobiology C, 9, 1–12.

    Article  CAS  Google Scholar 

  45. Natarajan, T. S., Natarajan, K., Bajaj, H. C., & Tayade, R. J. (2013). Enhanced photocatalytic activity of bismuth-doped TiO2 nanotubes under direct sunlight irradiation for degradation of Rhodamine B dye. Journal of Nanoparticle Research, 15, 1669.

    Article  Google Scholar 

  46. Abe, R., Sayama, K., & Arakawa, H. (2004). Dye-sensitized photocatalysts for efficient hydrogen production from aqueous I solution under visible light irradiation. Journal of Photochemistry and Photobiology A, 166, 115–122.

    Article  CAS  Google Scholar 

  47. Bae, E., & Choi, W. (2006). Effect of the anchoring group (carboxylate vs phosphonate) in ru-complex-sensitized TiO2 on hydrogen production under visible light. The Journal of Physical Chemistry B, 110, 14792–14799.

    Article  CAS  PubMed  Google Scholar 

  48. Moore, W. M., McDaniels, J. C., & Hen, J. A. (1997). The photochemistry of riboflavin-VI. The photophysical properties of isoalloxazines. Photochemistry and Photobiology, 25, 505–512.

    Article  Google Scholar 

  49. Grabowska, E., Reszczynska, J., & Zaleska, A. (2012). Mechanism of phenol photodegradation in the presence of pure and modified-TiO2, A review. Water Research, 46, 5453–5471.

    Article  CAS  PubMed  Google Scholar 

  50. Kanan, S., Moyet, M. A., Arthur, R. B., & Patterson, H. H. (2020). Recent advances on TiO2-based photocatalysts toward the degradation of pesticides and major organic pollutants from water bodies. Catalysis Reviews, 62, 1–65.

    Article  CAS  Google Scholar 

  51. Gatica, E., Natera, J., Pajares, A., Gambetta, C., Sancho, M. I., Massad, W. A., & García, N. A. (2017). Cyclodextrine-nanoencapsulation of niclosamide: Water solubility and meaningful enhancement of visible-light—mediated sensitized photodegradation of the drug. Journal of Photochemistry and Photobiology A, 348, 295–304.

    Article  CAS  Google Scholar 

  52. Chang-Yuan, L., Wen-Feng, W., Wei-Zhen, L., Zhen-Hui, H., Si-De, Y., & Nian-Yun, L. (1999). Generation and photosensitization properties of the oxidized radical of riboflavin: A laser flash photolysis study. Journal of Photochemistry and Photobiology B, 52, 111–116.

    Article  Google Scholar 

  53. Sobczynski, A., Duczmal, L., & Zmudzinski, W. (2004). Phenol destruction by photocatalysis on TiO2: An attempt to solve the reaction mechanism. Journal of Molecular Catalysis A, 213, 225–230.

    Article  CAS  Google Scholar 

  54. Massad, W. A., Barbieri, Y., Romero, M., & García, N. A. (2008). Vitamin B2-sensitized photo-oxidation of dopamine. Photochemistry and Photobiology, 84, 1201–1208.

    Article  CAS  PubMed  Google Scholar 

  55. Scanone, A. C., Gesponer, N. S., Alvarez, M. G., & Durantini, E. (2017). Photodynamic properties and photoinactivation of microorganisms mediated by 5,10,15,20-tetrakis(4-carboxyphenyl) porphyrin covalently linked to silica-coated magnetite nanoparticles. Journal of Photochemistry and Photobiology A, 346, 452–461.

    Article  CAS  Google Scholar 

  56. Cabezuelo, O., Martinez-Haya, R., Montes, N., Bosca, F., & Marin, M. L. (2021). Heterogeneous riboflavin-based photocatalyst for pollutant oxidation through electron transfer processes. Applied Catalysis B, 298, 120497.

    Article  CAS  Google Scholar 

  57. Wilkinson, F., Helman, W. P., & Ross, A. B. (1995). Rate constants for the decay and reactions of the lowest electronically excited singlet state of molecular oxygen in solution. An expanded and revised compilation. Journal of Physical and Chemical Reference Data, 24, 663–677.

    Article  CAS  Google Scholar 

  58. Frank, E., Scully, J., & Hoigne, J. (1987). Rate constants for reactions of singlet oxygen with phenols and other compounds in water. Chemosphere, 16, 681–694.

    Article  Google Scholar 

  59. Ferrari, G. V., Natera, J., Montaña, M. P., Muñoz, V., Gutiérrez, E. L., Massad, W. A., Miskoski, S., & García, N. A. (2015). Scavenging of photogenerated ROS by Oxicams. Possible biological and environmental implications. Journal of Photochemistry and Photobiology B, 153, 233–239.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

J.E.N. acknowledges Jimena S. Tuninetti and the Soft Matter Laboratory (INIFTA) for their help and discussion regarding thermogravimetric experiments. We are grateful to Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT), Agencia Córdoba Ciencia (ACC), Secretaría de Ciencia y Técnica of Universidad Nacional de Río Cuarto (SECyT UNRC) and Secretaría de Ciencia y Técnica of Universidad Nacional de San Luis (SECyT UNSL), all from Argentina, for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Natera.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 191 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Possetto, D., Gambetta, C., Gatica, E. et al. Photocatalytic evaluation and characterization of TiO2-riboflavin phosphate film: analysis of reactive oxygen species. Photochem Photobiol Sci 22, 513–524 (2023). https://doi.org/10.1007/s43630-022-00331-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-022-00331-y

Keywords

Navigation