Abstract
Single molecule fluorescence localization microscopy provides molecular localization with a precision in the tens of nanometer range in the plane perpendicular to the light propagation. This opens the possibility to count molecules and correlate their locations, starting from a map of the actual positions in a single molecule super resolution image. Considering molecular pair correlation as an indication of interaction, and a way to discern them from free molecules, we describe a method to calculate thermodynamic equilibrium constants. In this work, we use as a test system two complementary homo-oligonucleotides, one strand marked with Cyanine 3.5 and the other with Alexa Fluor 647. Hybridization is controlled by the amount of each strand, temperature, and the ionic force, and measured in steady state emission. The same samples are examined in Stochastic Optical Reconstruction Microscopy (STORM) experiments with split-field simultaneous two-colour detection. The effect of multiblinking, labelling-detection efficiency, and determination of the critical distance for association are discussed. We consistently determine values in STORM coincident with those of the bulk experiment.
Graphical abstract

This is a preview of subscription content,
to check access.




References
Hell, S. W. (2015). Nanoscopy with focused light (nobel lecture). Angewandte Chemie International Edition, 54, 8054–8066. https://doi.org/10.1002/ANIE.201504181
Betzig, E. (2015). Single molecules, cells, and super-resolution optics (nobel lecture). Angewandte Chemie International Edition, 54, 8034–8053. https://doi.org/10.1002/ANIE.201501003
Rust, M. J., Bates, M., & Zhuang, X. (2006). Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nature Methods, 3(10), 793–796. https://doi.org/10.1038/nmeth929
Bates, M., Huang, B., Rust, M. J., Dempsey, G. T., Wang, W., & Zhuang, X. (2010). Sub-diffraction-limit imaging with stochastic optical reconstruction microscopy. Springer Series in Chemical Physics, 96, 399–415. https://doi.org/10.1007/978-3-642-02597-6_20
Betzig, E., Patterson, G. H., Sougrat, R., Lindwasser, O. W., Olenych, S., Bonifacino, J. S., Davidson, M. W., Lippincott-Schwartz, J., & Hess, H. F. (2006). Imaging intracellular fluorescent proteins at nanometer resolution. Science, 313, 1642–1645. https://doi.org/10.1126/SCIENCE.1127344
Hummert, J., Tashev, S. A., & Herten, D. P. (2021). An update on molecular counting in fluorescence microscopy. The International Journal of Biochemistry & Cell Biology, 135, 105978. https://doi.org/10.1016/J.BIOCEL.2021.105978
Nicovich, P. R., Owen, D. M., & Gaus, K. (2017). Turning single-molecule localization microscopy into a quantitative bioanalytical tool. Nature Protocols, 12(3), 453–460. https://doi.org/10.1038/nprot.2016.166
Sharonov, A., & Hochstrasser, R. M. (2006). Wide-field subdiffraction imaging by accumulated binding of diffusing probes. Proceedings of the National Academy of Sciences, 103, 18911–18916. https://doi.org/10.1073/PNAS.0609643104
Khater, I. M., Nabi, I. R., & Hamarneh, G. (2020). A review of super-resolution single-molecule localization microscopy cluster analysis and quantification methods. Patterns, 1, 100038. https://doi.org/10.1016/j.patter.2020.100038
Szalai, A. M., Armando, N. G., Barabas, F. M., Stefani, F. D., Giordano, L., Bari, S. E., Cavasotto, C. N., Silberstein, S., & Aramendía, P. F. (2018). A fluorescence nanoscopy marker for corticotropin-releasing hormone type 1 receptor: Computer design, synthesis, signaling effects, super-resolved fluorescence imaging, and in situ affinity constant in cells. Physical Chemistry Chemical Physics, 20, 29212–29220. https://doi.org/10.1039/C8CP06196C
Dunn, K. W., Kamocka, M. M., & Mcdonald, J. H. (2011). A practical guide to evaluating colocalization in biological microscopy. American Journal of Physiology. Cell Physiology, 300, 723–742. https://doi.org/10.1152/ajpcell.00462.2010
Schermelleh, L., Ferrand, A., Huser, T., Eggeling, C., Sauer, M., Biehlmaier, O., & Drummen, G. P. C. (2019). Super-resolution microscopy demystified. Nature Cell Biology, 21(1), 72–84. https://doi.org/10.1038/s41556-018-0251-8
Dietz, M. S., & Heilemann, M. (2019). Optical super-resolution microscopy unravels the molecular composition of functional protein complexes. Nanoscale, 11, 17981–17991. https://doi.org/10.1039/C9NR06364A
Annibale, P., Vanni, S., Scarselli, M., Rothlisberger, U., & Radenovic, A. (2011). Quantitative photo activated localization microscopy: unraveling the effects of photoblinking. PLoS ONE, 6, 22678. https://doi.org/10.1371/journal.pone.0022678
Dempsey, G. T., Vaughan, J. C., Chen, K. H., Bates, M., & Zhuang, X. (2011). Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging. Nature Methods, 8(12), 1027–1036. https://doi.org/10.1038/nmeth.1768
Lelek, M., Gyparaki, M. T., Beliu, G., Schueder, F., Griffié, J., Manley, S., Jungmann, R., Sauer, M., Lakadamyali, M., & Zimmer, C. (2021). Single-molecule localization microscopy. Nature Reviews Methods Primers, 1(1), 1–27. https://doi.org/10.1038/s43586-021-00038-x
Baumgart, F., Arnold, A. M., Leskovar, K., Staszek, K., Fölser, M., Weghuber, J., Stockinger, H., & Schütz, G. J. (2016). Varying label density allows artifact-free analysis of membrane-protein nanoclusters. Nature Methods, 13(8), 661–664. https://doi.org/10.1038/nmeth.3897
Sengupta, P., Jovanovic-Talisman, T., & Lippincott-Schwartz, J. (2013). Quantifying spatial organization in point-localization superresolution images using pair correlation analysis. Nature Protocols, 8(2), 345–354. https://doi.org/10.1038/nprot.2013.005
Owczarzy, R., Huang, L., Manthey, J. A., Mcquisten, K. A., Behlke, M. A., & Walder, J. A. (2002). Thermodynamic treatment of oligonucleotide duplex-simplex equilibria. Biophysical Journal, 82, 30. https://doi.org/10.1073/pnas.2335948100
Mathur, D., Samanta, A., Ancona, M. G., Díaz, S. A., Kim, Y., Melinger, J. S., Goldman, E. R., Sadowski, J. P., Ong, L. L., Yin, P., & Medintz, I. L. (2021). Understanding Förster resonance energy transfer in the sheet regime with DNA brick-based dye networks. ACS Nano, 15, 16452–16468. https://doi.org/10.1021/acsnano.1c05871
Sanborn, M. E., Connolly, B. K., Gurunathan, K., & Levitus, M. (2007). Fluorescence properties and photophysics of the sulfoindocyanine Cy3 linked covalently to DNA. The Journal of Physical Chemistry B, 111(37), 11064–11074. https://doi.org/10.1021/jp072912u
Kibbe, W. A. (2007). OligoCalc: An online oligonucleotide properties calculator. Nucleic Acids Research, 35, W43–W46. https://doi.org/10.1093/NAR/GKM234
Bielec, K., Sozanski, K., Seynen, M., Dziekan, Z., Ten Wolde, P. R., & Holyst, R. (2019). Kinetics and equilibrium constants of oligonucleotides at low concentrations. Hybridization and melting study. Physical Chemistry Chemical Physics, 21, 10798–10807. https://doi.org/10.1039/C9CP01295H
Bielec, K., Bubak, G., Kalwarczyk, T., & Holyst, R. (2020). Analysis of brightness of a single fluorophore for quantitative characterization of biochemical reactions. Journal of Physical Chemistry B, 124, 1941–1948. https://doi.org/10.1021/acs.jpcb.0c00770
Hall, D. B., Underhill, P., & Torkelson, J. M. (1998). Spin coating of thin and ultrathin polymer films. Polymer Engineering & Science, 38, 2039–2045. https://doi.org/10.1002/PEN.10373
Ester, M., Kriegel, H.-P., Sander, J., & Xu, X. (1996). A density-based algorithm for discovering clusters in large spatial databases with noise. in KDD-96 Proceedings , pp. 226–231.
Mazouchi, A., Milstein, J. N. (2016). Fast optimized cluster algorithm for localizations (FOCAL): a spatial cluster analysis for super-resolved microscopy. Bioinformatics. 32(5), 747–754. https://doi.org/10.1093/bioinformatics/btv630
Joshi, P., & Mondal, P. P. (2021). Single-molecule clustering for super-resolution optical fluorescence microscopy. Photonics, 2022(9), 7. https://doi.org/10.3390/PHOTONICS9010007
Hellriegel, C., Kirstein, J., Bräuchle, C., Latour, V., Pigot, T., Olivier, R., Lacombe, S., Brown, R., Guieu, V., Payrastre, C., Izquierdo, A., & Mocho, P. (2004). Diffusion of single streptocyanine molecules in the nanoporous network of sol-gel glasses. Journal of Physical Chemistry B, 108, 14699–14709. https://doi.org/10.1021/JP049412A
Szalai, A. M., Lopez, L. F., Morales-Vásquez, M. Á., Stefani, F. D., & Aramendía, P. F. (2020). Analysis of sparse molecular distributions in fibrous arrangements based on the distance to the first neighbor in single molecule localization microscopy. Nanoscale, 12, 9495–9506. https://doi.org/10.1039/c9nr10805j
Jungmann, R., Avendaño, M. S., Dai, M., Woehrstein, J. B., Agasti, S. S., Feiger, Z., Rodal, A., & Yin, P. (2016). Quantitative super-resolution imaging with qPAINT. Nature Methods, 13, 439–442. https://doi.org/10.1038/nmeth.3804
Acknowledgements
MVC and LFMG are fellows and PFA is staff member of Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina, and full professor (Universidad de Buenos Aires). We thank Dr. Leonardo Lizarraga (CIBION, CONICET) for the AFM measurements. The work was financed by research grants from CONICET (PIP0626) and ANPCyT (PICT 2014-3634). SS acknowledges financial support from the Royal Society through a Dorothy Hodgkin fellowship (DHF\R1\191019).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors have no relevant financial or non-financial interests to disclose.
Additional information
This publication is dedicated to Prof. Silvia E. Braslavsky, a pioneer in photobiology and photobiophysics, on the occasion of her 80th birthday.
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The original online version of this article was revised: footnote was missing.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Cappellari, M.V., Marcano-García, L.F., Simoncelli, S. et al. Determination of association equilibrium constant from single molecule fluorescence localization microscopy. Photochem Photobiol Sci 21, 1751–1760 (2022). https://doi.org/10.1007/s43630-022-00254-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s43630-022-00254-8