Skip to main content
Log in

Determination of association equilibrium constant from single molecule fluorescence localization microscopy

Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Cite this article

Abstract

Single molecule fluorescence localization microscopy provides molecular localization with a precision in the tens of nanometer range in the plane perpendicular to the light propagation. This opens the possibility to count molecules and correlate their locations, starting from a map of the actual positions in a single molecule super resolution image. Considering molecular pair correlation as an indication of interaction, and a way to discern them from free molecules, we describe a method to calculate thermodynamic equilibrium constants. In this work, we use as a test system two complementary homo-oligonucleotides, one strand marked with Cyanine 3.5 and the other with Alexa Fluor 647. Hybridization is controlled by the amount of each strand, temperature, and the ionic force, and measured in steady state emission. The same samples are examined in Stochastic Optical Reconstruction Microscopy (STORM) experiments with split-field simultaneous two-colour detection. The effect of multiblinking, labelling-detection efficiency, and determination of the critical distance for association are discussed. We consistently determine values in STORM coincident with those of the bulk experiment.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Hell, S. W. (2015). Nanoscopy with focused light (nobel lecture). Angewandte Chemie International Edition, 54, 8054–8066. https://doi.org/10.1002/ANIE.201504181

    Article  CAS  PubMed  Google Scholar 

  2. Betzig, E. (2015). Single molecules, cells, and super-resolution optics (nobel lecture). Angewandte Chemie International Edition, 54, 8034–8053. https://doi.org/10.1002/ANIE.201501003

    Article  CAS  PubMed  Google Scholar 

  3. Rust, M. J., Bates, M., & Zhuang, X. (2006). Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nature Methods, 3(10), 793–796. https://doi.org/10.1038/nmeth929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bates, M., Huang, B., Rust, M. J., Dempsey, G. T., Wang, W., & Zhuang, X. (2010). Sub-diffraction-limit imaging with stochastic optical reconstruction microscopy. Springer Series in Chemical Physics, 96, 399–415. https://doi.org/10.1007/978-3-642-02597-6_20

    Article  CAS  Google Scholar 

  5. Betzig, E., Patterson, G. H., Sougrat, R., Lindwasser, O. W., Olenych, S., Bonifacino, J. S., Davidson, M. W., Lippincott-Schwartz, J., & Hess, H. F. (2006). Imaging intracellular fluorescent proteins at nanometer resolution. Science, 313, 1642–1645. https://doi.org/10.1126/SCIENCE.1127344

    Article  CAS  PubMed  Google Scholar 

  6. Hummert, J., Tashev, S. A., & Herten, D. P. (2021). An update on molecular counting in fluorescence microscopy. The International Journal of Biochemistry & Cell Biology, 135, 105978. https://doi.org/10.1016/J.BIOCEL.2021.105978

    Article  CAS  Google Scholar 

  7. Nicovich, P. R., Owen, D. M., & Gaus, K. (2017). Turning single-molecule localization microscopy into a quantitative bioanalytical tool. Nature Protocols, 12(3), 453–460. https://doi.org/10.1038/nprot.2016.166

    Article  CAS  PubMed  Google Scholar 

  8. Sharonov, A., & Hochstrasser, R. M. (2006). Wide-field subdiffraction imaging by accumulated binding of diffusing probes. Proceedings of the National Academy of Sciences, 103, 18911–18916. https://doi.org/10.1073/PNAS.0609643104

    Article  CAS  Google Scholar 

  9. Khater, I. M., Nabi, I. R., & Hamarneh, G. (2020). A review of super-resolution single-molecule localization microscopy cluster analysis and quantification methods. Patterns, 1, 100038. https://doi.org/10.1016/j.patter.2020.100038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Szalai, A. M., Armando, N. G., Barabas, F. M., Stefani, F. D., Giordano, L., Bari, S. E., Cavasotto, C. N., Silberstein, S., & Aramendía, P. F. (2018). A fluorescence nanoscopy marker for corticotropin-releasing hormone type 1 receptor: Computer design, synthesis, signaling effects, super-resolved fluorescence imaging, and in situ affinity constant in cells. Physical Chemistry Chemical Physics, 20, 29212–29220. https://doi.org/10.1039/C8CP06196C

    Article  CAS  PubMed  Google Scholar 

  11. Dunn, K. W., Kamocka, M. M., & Mcdonald, J. H. (2011). A practical guide to evaluating colocalization in biological microscopy. American Journal of Physiology. Cell Physiology, 300, 723–742. https://doi.org/10.1152/ajpcell.00462.2010

    Article  CAS  Google Scholar 

  12. Schermelleh, L., Ferrand, A., Huser, T., Eggeling, C., Sauer, M., Biehlmaier, O., & Drummen, G. P. C. (2019). Super-resolution microscopy demystified. Nature Cell Biology, 21(1), 72–84. https://doi.org/10.1038/s41556-018-0251-8

    Article  CAS  PubMed  Google Scholar 

  13. Dietz, M. S., & Heilemann, M. (2019). Optical super-resolution microscopy unravels the molecular composition of functional protein complexes. Nanoscale, 11, 17981–17991. https://doi.org/10.1039/C9NR06364A

    Article  CAS  PubMed  Google Scholar 

  14. Annibale, P., Vanni, S., Scarselli, M., Rothlisberger, U., & Radenovic, A. (2011). Quantitative photo activated localization microscopy: unraveling the effects of photoblinking. PLoS ONE, 6, 22678. https://doi.org/10.1371/journal.pone.0022678

    Article  CAS  Google Scholar 

  15. Dempsey, G. T., Vaughan, J. C., Chen, K. H., Bates, M., & Zhuang, X. (2011). Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging. Nature Methods, 8(12), 1027–1036. https://doi.org/10.1038/nmeth.1768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lelek, M., Gyparaki, M. T., Beliu, G., Schueder, F., Griffié, J., Manley, S., Jungmann, R., Sauer, M., Lakadamyali, M., & Zimmer, C. (2021). Single-molecule localization microscopy. Nature Reviews Methods Primers, 1(1), 1–27. https://doi.org/10.1038/s43586-021-00038-x

    Article  CAS  Google Scholar 

  17. Baumgart, F., Arnold, A. M., Leskovar, K., Staszek, K., Fölser, M., Weghuber, J., Stockinger, H., & Schütz, G. J. (2016). Varying label density allows artifact-free analysis of membrane-protein nanoclusters. Nature Methods, 13(8), 661–664. https://doi.org/10.1038/nmeth.3897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sengupta, P., Jovanovic-Talisman, T., & Lippincott-Schwartz, J. (2013). Quantifying spatial organization in point-localization superresolution images using pair correlation analysis. Nature Protocols, 8(2), 345–354. https://doi.org/10.1038/nprot.2013.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Owczarzy, R., Huang, L., Manthey, J. A., Mcquisten, K. A., Behlke, M. A., & Walder, J. A. (2002). Thermodynamic treatment of oligonucleotide duplex-simplex equilibria. Biophysical Journal, 82, 30. https://doi.org/10.1073/pnas.2335948100

    Article  CAS  Google Scholar 

  20. Mathur, D., Samanta, A., Ancona, M. G., Díaz, S. A., Kim, Y., Melinger, J. S., Goldman, E. R., Sadowski, J. P., Ong, L. L., Yin, P., & Medintz, I. L. (2021). Understanding Förster resonance energy transfer in the sheet regime with DNA brick-based dye networks. ACS Nano, 15, 16452–16468. https://doi.org/10.1021/acsnano.1c05871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sanborn, M. E., Connolly, B. K., Gurunathan, K., & Levitus, M. (2007). Fluorescence properties and photophysics of the sulfoindocyanine Cy3 linked covalently to DNA. The Journal of Physical Chemistry B, 111(37), 11064–11074. https://doi.org/10.1021/jp072912u

    Article  CAS  PubMed  Google Scholar 

  22. Kibbe, W. A. (2007). OligoCalc: An online oligonucleotide properties calculator. Nucleic Acids Research, 35, W43–W46. https://doi.org/10.1093/NAR/GKM234

    Article  PubMed  PubMed Central  Google Scholar 

  23. Bielec, K., Sozanski, K., Seynen, M., Dziekan, Z., Ten Wolde, P. R., & Holyst, R. (2019). Kinetics and equilibrium constants of oligonucleotides at low concentrations. Hybridization and melting study. Physical Chemistry Chemical Physics, 21, 10798–10807. https://doi.org/10.1039/C9CP01295H

    Article  CAS  PubMed  Google Scholar 

  24. Bielec, K., Bubak, G., Kalwarczyk, T., & Holyst, R. (2020). Analysis of brightness of a single fluorophore for quantitative characterization of biochemical reactions. Journal of Physical Chemistry B, 124, 1941–1948. https://doi.org/10.1021/acs.jpcb.0c00770

    Article  CAS  PubMed  Google Scholar 

  25. Hall, D. B., Underhill, P., & Torkelson, J. M. (1998). Spin coating of thin and ultrathin polymer films. Polymer Engineering & Science, 38, 2039–2045. https://doi.org/10.1002/PEN.10373

    Article  CAS  Google Scholar 

  26. Ester, M., Kriegel, H.-P., Sander, J., & Xu, X. (1996). A density-based algorithm for discovering clusters in large spatial databases with noise. in KDD-96 Proceedings , pp. 226–231.

  27. Mazouchi, A., Milstein, J. N. (2016). Fast optimized cluster algorithm for localizations (FOCAL): a spatial cluster analysis for super-resolved microscopy. Bioinformatics. 32(5), 747–754. https://doi.org/10.1093/bioinformatics/btv630

    Article  CAS  PubMed  Google Scholar 

  28. Joshi, P., & Mondal, P. P. (2021). Single-molecule clustering for super-resolution optical fluorescence microscopy. Photonics, 2022(9), 7. https://doi.org/10.3390/PHOTONICS9010007

    Article  Google Scholar 

  29. Hellriegel, C., Kirstein, J., Bräuchle, C., Latour, V., Pigot, T., Olivier, R., Lacombe, S., Brown, R., Guieu, V., Payrastre, C., Izquierdo, A., & Mocho, P. (2004). Diffusion of single streptocyanine molecules in the nanoporous network of sol-gel glasses. Journal of Physical Chemistry B, 108, 14699–14709. https://doi.org/10.1021/JP049412A

    Article  CAS  Google Scholar 

  30. Szalai, A. M., Lopez, L. F., Morales-Vásquez, M. Á., Stefani, F. D., & Aramendía, P. F. (2020). Analysis of sparse molecular distributions in fibrous arrangements based on the distance to the first neighbor in single molecule localization microscopy. Nanoscale, 12, 9495–9506. https://doi.org/10.1039/c9nr10805j

    Article  CAS  PubMed  Google Scholar 

  31. Jungmann, R., Avendaño, M. S., Dai, M., Woehrstein, J. B., Agasti, S. S., Feiger, Z., Rodal, A., & Yin, P. (2016). Quantitative super-resolution imaging with qPAINT. Nature Methods, 13, 439–442. https://doi.org/10.1038/nmeth.3804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

MVC and LFMG are fellows and PFA is staff member of Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina, and full professor (Universidad de Buenos Aires). We thank Dr. Leonardo Lizarraga (CIBION, CONICET) for the AFM measurements. The work was financed by research grants from CONICET (PIP0626) and ANPCyT (PICT 2014-3634). SS acknowledges financial support from the Royal Society through a Dorothy Hodgkin fellowship (DHF\R1\191019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro F. Aramendía.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

This publication is dedicated to Prof. Silvia E. Braslavsky, a pioneer in photobiology and photobiophysics, on the occasion of her 80th birthday.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

The original online version of this article was revised: footnote was missing.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 472 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cappellari, M.V., Marcano-García, L.F., Simoncelli, S. et al. Determination of association equilibrium constant from single molecule fluorescence localization microscopy. Photochem Photobiol Sci 21, 1751–1760 (2022). https://doi.org/10.1007/s43630-022-00254-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-022-00254-8

Keywords

Navigation