Skip to main content
Log in

Time-resolved diffusion reveals photoreactions of BLUF proteins with similar functional domains

  • Reviews
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

BLUF (blue light sensor using flavin) proteins are the blue light receptors that consist of flavin-binding BLUF domains and functional domains. Upon blue light excitation, the hydrogen bond network around the flavin chromophore changes, and the absorption spectrum in the visible region shifts to red. Light signal received in the BLUF domain is intramolecularly or intermolecularly transmitted to the functional region. In this review, the reactions of three BLUF proteins with similar EAL functional groups within the protein (BlrP1, and YcgF), or with a separated target protein (PapB) are described using time-resolved diffusion technique. The diffusion coefficients (D) of the BLUF domains did not significantly change upon photoexcitation, whereas those of the full-length proteins BlrP1 and YcgF and the PapB–PapA system significantly decreased. The changes in D should be due to diffusion-sensitive conformational changes (DSCC) that alter the friction of diffusion. The time constants of the major D changes of BlrP1 and PapB–PapA were similar (~ 20 ms), although the magnitude of the friction change depended on the proteins. Similarities and differences among the reactions of these proteins were clarified from the viewpoint of DSCC.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gomelsky, M., & Klug, G. (2002). BLUF: A novel FAD-binding domain involved in sensory transduction in microorganisms. Trends in Biochemical Sciences, 27(10), 497–500. https://doi.org/10.1016/S0968-0004(02)02181-3

    Article  CAS  PubMed  Google Scholar 

  2. Losi, A. (2007). Flavin-based blue-light photosensors: A photobiophysics update. Photochemistry and Photobiology, 83(6), 1283–1300. https://doi.org/10.1111/j.1751-1097.2007.00196.x

    Article  CAS  PubMed  Google Scholar 

  3. Masuda, S. (2013). Light detection and signal transduction in the BLUF photoreceptors. Plant and Cell Physiology, 54(2), 171–179. https://doi.org/10.1093/pcp/pcs173

    Article  CAS  PubMed  Google Scholar 

  4. Park, S. Y., & Tame, J. R. H. (2017). Seeing the light with BLUF proteins. Biophysical Reviews, 9(2), 169–176. https://doi.org/10.1007/s12551-017-0258-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fujisawa, T., & Masuda, S. (2018). Light-induced chromophore and protein responses and mechanical signal transduction of BLUF proteins. Biophysical Reviews, 10(2), 327–337. https://doi.org/10.1007/s12551-017-0355-6

    Article  CAS  PubMed  Google Scholar 

  6. Kita, A., Okajima, K., Morimoto, Y., Ikeuchi, M., & Miki, K. (2005). Structure of a cyanobacterial BLUF protein, Tll0078, containing a novel FAD-binding blue light sensor domain. Journal of Molecular Biology, 349(1), 1–9. https://doi.org/10.1016/J.JMB.2005.03.067

    Article  CAS  PubMed  Google Scholar 

  7. Anderson, S., Dragnea, V., Masuda, S., Ybe, J., Moffat, K., & Bauer, C. (2005). Structure of a novel photoreceptor, the BLUF domain of AppA from Rhodobacter sphaeroides. Biochemistry, 44(22), 7998–8005. https://doi.org/10.1021/BI0502691

    Article  CAS  PubMed  Google Scholar 

  8. Wu, Q., & Gardner, K. H. (2009). Structure and insight into blue light-induced changes in the BlrP1 BLUF domain. Biochemistry, 48(12), 2620–2629. https://doi.org/10.1021/bi802237r

    Article  CAS  PubMed  Google Scholar 

  9. Barends, T. R. M., Hartmann, E., Griese, J. J., Beitlich, T., Kirienko, N. V., Ryjenkov, D. A., et al. (2009). Structure and mechanism of a bacterial light-regulated cyclic nucleotide phosphodiesterase. Nature, 459(7249), 1015–1018. https://doi.org/10.1038/nature07966

    Article  CAS  PubMed  Google Scholar 

  10. Jung, A., Domratcheva, T., Tarutina, M., Wu, Q., Ko, W. H., Shoeman, R. L., et al. (2005). Structure of a bacterial BLUF photoreceptor: Insights into blue light-mediated signal transduction. Proceedings of the National Academy of Sciences of the United States of America, 102(35), 12350–12355. https://doi.org/10.1073/pnas.0500722102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jung, A., Reinstein, J., Domratcheva, T., Shoeman, R. L., & Schlichting, I. (2006). Crystal structures of the AppA BLUF domain photoreceptor provide insights into blue light-mediated signal transduction. Journal of Molecular Biology, 362(4), 717–732. https://doi.org/10.1016/j.jmb.2006.07.024

    Article  CAS  PubMed  Google Scholar 

  12. Chitrakar, I., Iuliano, J. N., He, Y. L., Woroniecka, H. A., Tolentino Collado, J., Wint, J. M., French, J. B., et al. (2020). structural basis for the regulation of biofilm formation and iron uptake in A. baumannii by the blue-light-using photoreceptor BIsA. ACS Infectious Diseases, 6(10), 2592–2603. https://doi.org/10.1021/acsinfecdis.0c00156

    Article  CAS  PubMed  Google Scholar 

  13. Yuan, H., Anderson, S., Masuda, S., Dragnea, V., Moffat, K., & Bauer, C. (2006). Crystal structures of the Synechocystis photoreceptor Slr1694 reveal distinct structural states related to signaling. Biochemistry, 45(42), 12687–12694. https://doi.org/10.1021/bi061435n

    Article  CAS  PubMed  Google Scholar 

  14. Ohki, M., Sugiyama, K., Kawai, F., Tanaka, H., Nihei, Y., Unzai, S., et al. (2016). Structural insight into photoactivation of an adenylate cyclase from a photosynthetic cyanobacterium. Proceedings of the National Academy of Sciences of the United States of America, 113(24), 6659–6664. https://doi.org/10.1073/pnas.1517520113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yin, L., Dragnea, V., Feldman, G., Hammad, L. A., Karty, J. A., Dann, C. E., & Bauer, C. E. (2013). Redox and light control the heme-sensing activity of AppA. MBio, 1, 1–10. https://doi.org/10.1128/MBIO.00563-13

    Article  Google Scholar 

  16. Winkler, A., Heintz, U., Lindner, R., Reinstein, J., Shoeman, R. L., & Schlichting, I. (2013). A ternary AppA-PpsR-DNA complex mediates light regulation of photosynthesis-related gene expression. Nature structural & molecular biology, 20(7), 859–867. https://doi.org/10.1038/NSMB.2597

    Article  CAS  Google Scholar 

  17. Lindner, R., Hartmann, E., Tarnawski, M., Winkler, A., Frey, D., Reinstein, J., et al. (2017). Photoactivation mechanism of a bacterial light-regulated adenylyl cyclase. Journal of molecular biology, 429(9), 1336–1351. https://doi.org/10.1016/J.JMB.2017.03.020

    Article  CAS  PubMed  Google Scholar 

  18. Grinstead, J. S., Hsu, S. T. D., Laan, W., Bonvin, A. M. J. J., Hellingwerf, K. J., Boelens, R., & Kaptein, R. (2006). The solution structure of the AppA BLUF domain: Insight into the mechanism of light-induced signaling. ChemBioChem, 7(1), 187–193. https://doi.org/10.1002/cbic.200500270

    Article  CAS  PubMed  Google Scholar 

  19. Conrad, K. S., Manahan, C. C., & Crane, B. R. (2014). Photochemistry of flavoprotein light sensors. Nature Chemical Biology, 10(10), 801–809. https://doi.org/10.1038/NCHEMBIO.1633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fukushima, Y., Murai, Y., Okajima, K., Ikeuchi, M., & Itoh, S. (2008). Photoreactions of Tyr8- and Gln50-mutated BLUF domains of the PixD protein of Thermosynechococcus elongatus BP-1: Photoconversion at low temperature without Tyr8. Biochemistry, 47(2), 660–669. https://doi.org/10.1021/BI700674W

    Article  CAS  PubMed  Google Scholar 

  21. Goings, J. J., Li, P., Zhu, Q., & Hammes-Schiffer, S. (2020). Formation of an unusual glutamine tautomer in a blue light using flavin photocycle characterizes the light-adapted state. Proceedings of the National Academy of Sciences of the United States of America, 117(43), 26626–26632. https://doi.org/10.1073/PNAS.2016719117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Penzkofer, A., Stierl, M., Mathes, T., & Hegemann, P. (2014). Absorption and emission spectroscopic characterization of photo-dynamics of photoactivated adenylyl cyclase mutant bPAC-Y7F of Beggiatoa sp. Journal of Photochemistry and Photobiology B: Biology, 140, 182–193. https://doi.org/10.1016/J.JPHOTOBIOL.2014.06.017

    Article  CAS  Google Scholar 

  23. Iwata, T., Nagai, T., Ito, S., Osoegawa, S., Iseki, M., Watanabe, M., et al. (2018). Hydrogen bonding environments in the photocycle process around the flavin chromophore of the AppA–BLUF domain. Journal of the American Chemical Society, 140(38), 11982–11991. https://doi.org/10.1021/JACS.8B05123

    Article  CAS  PubMed  Google Scholar 

  24. Dragnea, V., Arunkumar, A. I., Lee, C. W., Giedroc, D. P., & Bauer, C. E. (2010). A Q63E rhodobacter sphaeroides AppA BLUF domain mutant is locked in a pseudo-light-excited signaling state. Biochemistry, 49(50), 10682–10690. https://doi.org/10.1021/BI1002162

    Article  CAS  PubMed  Google Scholar 

  25. Khrenova, M. G., Nemukhin, A. V., & Domratcheva, T. (2013). Photoinduced electron transfer facilitates tautomerization of the conserved signaling glutamine side chain in BLUF protein light sensors. Journal of Physical Chemistry B, 117(8), 2369–2377. https://doi.org/10.1021/JP312775X

    Article  CAS  PubMed  Google Scholar 

  26. Hsiao, Y. W., Götze, J. P., & Thiel, W. (2012). The central role of Gln63 for the hydrogen bonding network and UV–visible spectrum of the AppA BLUF domain. Journal of Physical Chemistry B, 116(28), 8064–8073. https://doi.org/10.1021/JP3028758

    Article  CAS  PubMed  Google Scholar 

  27. Udvarhelyi, A., & Domratcheva, T. (2013). Glutamine rotamers in BLUF photoreceptors: A mechanistic reappraisal. Journal of Physical Chemistry B, 117(10), 2888–2897. https://doi.org/10.1021/JP400437X

    Article  CAS  PubMed  Google Scholar 

  28. Sadeghian, K., Bocola, M., & Schütz, M. (2008). A conclusive mechanism of the photoinduced reaction cascade in blue light using flavin photoreceptors. Journal of the American Chemical Society, 130(37), 12501–12513. https://doi.org/10.1021/JA803726A

    Article  CAS  PubMed  Google Scholar 

  29. Mathes, T., Van Stokkum, I. H. M., Bonetti, C., Hegemann, P., & Kennis, J. T. M. (2011). The hydrogen-bond switch reaction of the blrb bluf domain of rhodobacter sphaeroides. Journal of Physical Chemistry B, 115(24), 7963–7971. https://doi.org/10.1021/JP201296M

    Article  CAS  PubMed  Google Scholar 

  30. Bonetti, C., Stierl, M., Mathes, T., Van Stokkum, I. H. M., Mullen, K. M., Cohen-Stuart, T. A., et al. (2009). The role of key amino acids in the photoactivation pathway of the Synechocystis Slr1694 BLUF domain. Biochemistry, 48(48), 11458–11469. https://doi.org/10.1021/BI901196X

    Article  CAS  PubMed  Google Scholar 

  31. Domratcheva, T., Hartmann, E., Schlichting, I., & Kottke, T. (2016). Evidence for tautomerisation of glutamine in BLUF blue light receptors by vibrational spectroscopy and computational chemistry. Scientific Reports. https://doi.org/10.1038/SREP22669

    Article  PubMed  PubMed Central  Google Scholar 

  32. Bonetti, C., Mathes, T., Van Stokkum, I. H. M., Mullen, K. M., Groot, M. L., Van Grondelle, R., et al. (2008). Hydrogen bond switching among flavin and amino acid side chains in the BLUF photoreceptor observed by ultrafast infrared spectroscopy. Biophysical Journal, 95(10), 4790–4802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Götze, J. P., Greco, C., Mitrić, R., Bonačić-Koutecký, V., & Saalfrank, P. (2012). BLUF hydrogen network dynamics and UV/Vis spectra: A combined molecular dynamics and quantum chemical study. Journal of Computational Chemistry, 33(28), 2233–2242. https://doi.org/10.1002/JCC.23056

    Article  PubMed  Google Scholar 

  34. Toh, K. C., Van Stokkum, I. H. M., Hendriks, J., Alexandre, M. T. A., Arents, J. C., Perez, M. A., et al. (2008). On the signaling mechanism and the absence of photoreversibility in the AppA BLUF domain. Biophysical Journal, 95(1), 312–321. https://doi.org/10.1529/biophysj.107.117788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kennis, J. T., & Groot, M. L. (2007). Ultrafast spectroscopy of biological photoreceptors. Current Opinion in Structural Biology, 17(5), 623–630. https://doi.org/10.1016/j.sbi.2007.09.006

    Article  CAS  PubMed  Google Scholar 

  36. Stelling, A. L., Ronayne, K. L., Nappa, J., Tonge, P. J., & Meech, S. R. (2007). Ultrafast structural dynamics in BLUF domains: Transient infrared spectroscopy of AppA and its mutants. Journal of the American Chemical Society, 129(50), 15556–15564. https://doi.org/10.1021/ja074074n

    Article  CAS  PubMed  Google Scholar 

  37. Gauden, M., Yeremenko, S., Laan, W., Van Stokkum, I. H. M., Ihalainen, J. A., Van Grondelle, R., et al. (2005). Photocycle of the flavin-binding photoreceptor AppA, a bacterial transcriptional antirepressor of photosynthesis genes. Biochemistry, 44(10), 3653–3662. https://doi.org/10.1021/bi047359a

    Article  CAS  PubMed  Google Scholar 

  38. Lukacs, A., Zhao, R. K., Haigney, A., Brust, R., Greetham, G. M., Towrie, M., et al. (2012). Excited state structure and dynamics of the neutral and anionic flavin radical revealed by ultrafast transient mid-IR to visible spectroscopy. The Journal of Physical Chemistry B, 116(20), 5810–5818. https://doi.org/10.1021/jp2116559

    Article  CAS  PubMed  Google Scholar 

  39. Lukacs, A., Haigney, A., Brust, R., Zhao, R. K., Stelling, A. L., Clark, I. P., et al. (2011). Photoexcitation of the blue light using FAD photoreceptor AppA results in ultrafast changes to the protein matrix. Journal of the American Chemical Society, 133(42), 16893–16900. https://doi.org/10.1021/ja2060098

    Article  CAS  PubMed  Google Scholar 

  40. Haigney, A., Lukacs, A., Brust, R., Zhao, R. K., Towrie, M., Greetham, G. M., et al. (2012). Vibrational assignment of the ultrafast infrared spectrum of the photoactivatable flavoprotein AppA. The journal of Physical Chemistry. B, 116(35), 10722–10729. https://doi.org/10.1021/jp305220m

    Article  CAS  PubMed  Google Scholar 

  41. Brust, R., Haigney, A., Lukacs, A., Gil, A., Hossain, S., Addison, K., et al. (2014). Ultrafast structural dynamics of BlsA, a photoreceptor from the pathogenic bacterium Acinetobacter baumannii. The Journal of Physical Chemistry Letters, 5(1), 220–224. https://doi.org/10.1021/jz4023738

    Article  CAS  PubMed  Google Scholar 

  42. Fujisawa, T., Takeuchi, S., Masuda, S., & Tahara, T. (2014). Signaling-state formation mechanism of a BLUF protein PapB from the purple bacterium Rhodopseudomonas palustris studied by femtosecond time-resolved absorption spectroscopy. Journal of Physical Chemistry B, 118(51), 14761–14773. https://doi.org/10.1021/jp5076252

    Article  CAS  PubMed  Google Scholar 

  43. Fujisawa, T., Masuda, S., Takeuchi, S., & Tahara, T. (2021). Femtosecond time-resolved absorption study of signaling state of a BLUF protein PixD from the cyanobacterium Synechocystis: Hydrogen-bond rearrangement completes during forward proton-coupled electron transfer. Journal of Physical Chemistry B, 125(44), 12154–12165. https://doi.org/10.1021/acs.jpcb.1c05957

    Article  CAS  PubMed  Google Scholar 

  44. Nakasone, Y., Ono, T. A., Ishii, A., Masuda, S., & Terazima, M. (2010). Temperature-sensitive reaction of a photosensor protein YcgF: Possibility of a role of temperature sensor. Biochemistry, 49(10), 2288–2296. https://doi.org/10.1021/bi902121z

    Article  CAS  PubMed  Google Scholar 

  45. Hazra, P., Inoue, K., Laan, W., Hellingwerf, K. J., & Terazima, M. (2008). Energetics and role of the hydrophobic interaction during photoreaction of the BLUF domain of AppA. The Journal of Physical Chemistry B, 112(5), 1494–1501. https://doi.org/10.1021/jp0767314

    Article  CAS  PubMed  Google Scholar 

  46. Shibata, K., Nakasone, Y., & Terazima, M. (2022). Selective photoinduced dimerization and slow recovery of a BLUF domain of EB1. The Journal of Physical Chemistry B. https://doi.org/10.1021/acs.jpcb.1c10100

    Article  PubMed  Google Scholar 

  47. Tanaka, K., Nakasone, Y., Okajima, K., Ikeuchi, M., Tokutomi, S., & Terazima, M. (2012). Time-resolved tracking of interprotein signal transduction: Synechocystis PixD-PixE complex as a sensor of light intensity. Journal of the American Chemical Society, 134(20), 8336–8339. https://doi.org/10.1021/ja301540r

    Article  CAS  PubMed  Google Scholar 

  48. Shibata, K., Nakasone, Y., & Terazima, M. (2018). Photoreaction of BlrP1: The role of a nonlinear photo-intensity sensor. Physical Chemistry Chemical Physics, 20(12), 8133–8142. https://doi.org/10.1039/c7cp08436f

    Article  CAS  PubMed  Google Scholar 

  49. Tanaka, K., Nakasone, Y., Okajima, K., Ikeuchi, M., Tokutomi, S., & Terazima, M. (2011). A way to sense light intensity: Multiple-excitation of the BLUF photoreceptor TePixD suppresses conformational change. FEBS Letters, 585(5), 786–790. https://doi.org/10.1016/j.febslet.2011.02.003

    Article  CAS  PubMed  Google Scholar 

  50. Hazra, P., Inoue, K., Laan, W., Hellingwerf, K. J., & Terazima, M. (2006). Tetramer formation kinetics in the signaling state of AppA monitored by time-resolved diffusion. Biophysical Journal, 91(2), 654–661. https://doi.org/10.1529/biophysj.106.083915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Toyooka, T., Tanaka, K., Okajima, K., Ikeuchi, M., Tokutomi, S., & Terazima, M. (2011). Macromolecular crowding effects on reactions of TePixD (Tll0078). Photochemistry and Photobiology, 87(3), 584–589. https://doi.org/10.1111/j.1751-1097.2010.00849.x

    Article  CAS  PubMed  Google Scholar 

  52. Nakasone, Y., Kikukawa, K., Masuda, S., & Terazima, M. (2019). Time-resolved study of interprotein signaling process of a blue light sensor PapB–PapA complex. Journal of Physical Chemistry B, 123(15), 3210–3218. https://doi.org/10.1021/acs.jpcb.9b00196

    Article  CAS  PubMed  Google Scholar 

  53. Nakasone, Y., Ono, T. A., Ishii, A., Masuda, S., & Terazima, M. (2007). Transient dimerization and conformational change of a BLUF protein: YcgF. Journal of the American Chemical Society, 129(22), 7028–7035. https://doi.org/10.1021/ja065682q

    Article  CAS  PubMed  Google Scholar 

  54. Tanaka, K., Nakasone, Y., Okajima, K., Ikeuchi, M., Tokutomi, S., & Terazima, M. (2009). Oligomeric-state-dependent conformational change of the BLUF protein TePixD (Tll0078). Journal of Molecular Biology, 386(5), 1290–1300. https://doi.org/10.1016/j.jmb.2009.01.026

    Article  CAS  PubMed  Google Scholar 

  55. Tanaka, K., Nakasone, Y., Okajima, K., Ikeuchi, M., Tokutomi, S., & Terazima, M. (2011). Light-induced conformational change and transient dissociation reaction of the BLUF photoreceptor synechocystis PixD (Slr1694). Journal of Molecular Biology, 409(5), 773–785. https://doi.org/10.1016/j.jmb.2011.04.032

    Article  CAS  PubMed  Google Scholar 

  56. Römling, U., & Amikam, D. (2006). Cyclic di-GMP as a second messenger. Current Opinion in Microbiology, 9(2), 218–228. https://doi.org/10.1016/j.mib.2006.02.010

    Article  CAS  PubMed  Google Scholar 

  57. Schirmer, T., & Jenal, U. (2009). Structural and mechanistic determinants of c-di-GMP signalling. Nature Reviews. Microbiology, 7(10), 724–735. https://doi.org/10.1038/NRMICRO2203

    Article  CAS  PubMed  Google Scholar 

  58. Rajagopal, S., Key, J. M., Purcell, E. B., Boerema, D. J., & Moffat, K. (2004). Purification and initial characterization of a putative blue light regulated phosphodiesterase from Escherichia coli. Photochemistry and Photobiology. https://doi.org/10.1562/2004-06-16-ra-203

    Article  PubMed  Google Scholar 

  59. Tschowri, N., Busse, S., & Hengge, R. (2009). The BLUF-EAL protein YcgF acts as a direct anti-repressor in a blue-light response of Escherichia coli. Genes and Development, 23(4), 522–534. https://doi.org/10.1101/gad.499409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Tschowri, N., Lindenberg, S., & Hengge, R. (2012). Molecular function and potential evolution of the biofilm-modulating blue light-signalling pathway of Escherichia coli. Molecular Microbiology, 85(5), 893–906. https://doi.org/10.1111/j.1365-2958.2012.08147.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kanazawa, T., Ren, S., Maekawa, M., Hasegawa, K., Arisaka, F., Hyodo, M., et al. (2010). Biochemical and physiological characterization of a BLUF protein-EAL protein complex involved in blue light-dependent degradation of cyclic diguanylate in the purple bacterium rhodopseudomonas palustris. Biochemistry, 49(50), 10647–10655. https://doi.org/10.1021/bi101448t

    Article  CAS  PubMed  Google Scholar 

  62. Schirmer, T. (2016). C-di-GMP synthesis: structural aspects of evolution, catalysis and regulation. Journal of Molecular Biology, 428(19), 3683–3701. https://doi.org/10.1016/J.JMB.2016.07.023

    Article  CAS  PubMed  Google Scholar 

  63. Unno, M., Kikuchi, S., & Masuda, S. (2010). Structural refinement of a key tryptophan residue in the BLUF photoreceptor AppA by ultraviolet resonance Raman spectroscopy. Biophysical Journal, 98(9), 1949–1956. https://doi.org/10.1016/j.bpj.2010.01.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Unno, M., Sano, R., Masuda, S., Ono, T. A., & Yamauchi, S. (2005). Light-induced structural changes in the active site of the BLUF domain in AppA by Raman spectroscopy. Journal of Physical Chemistry B, 109(25), 12620–12626. https://doi.org/10.1021/JP0522664

    Article  CAS  PubMed  Google Scholar 

  65. Masuda, S., Hasegawa, K., & Ono, T. A. (2005). Tryptophan at position 104 is involved in transforming light signal into changes of β-sheet structure for the signaling state in the BLUF domain of AppA. Plant and Cell Physiology, 46(12), 1894–1901. https://doi.org/10.1093/PCP/PCI208

    Article  CAS  PubMed  Google Scholar 

  66. Karadi, K., Kapetanaki, S. M., Raics, K., Pecsi, I., Kapronczai, R., Fekete, Z., et al. (2020). Functional dynamics of a single tryptophan residue in a BLUF protein revealed by fluorescence spectroscopy. Scientific Reports. https://doi.org/10.1038/s41598-020-59073-5

    Article  PubMed  PubMed Central  Google Scholar 

  67. Dragnea, V., Arunkumar, A. I., Hua, Y., Giedroc, D. P., & Bauer, C. E. (2009). Spectroscopic studies of the AppA BLUF domain from Rhodobacter sphaeroides: Addressing movement of tryptophan 104 in the signaling state. Biochemistry, 48(42), 9969–9979. https://doi.org/10.1021/bi9009067

    Article  CAS  PubMed  Google Scholar 

  68. Gauden, M., Grinstead, J. S., Laan, W., Van Stokkum, I. H. M., Avila-Perez, M., Toh, K. C., et al. (2007). On the role of aromatic side chains in the photoactivation of BLUF domains. Biochemistry, 46(25), 7405–7415. https://doi.org/10.1021/bi7006433

    Article  CAS  PubMed  Google Scholar 

  69. Terazima, M. (2011). Time-dependent intermolecular interaction during protein reactions. Physical Chemistry Chemical Physics, 13(38), 16928–16940. https://doi.org/10.1039/c1cp21868a

    Article  CAS  PubMed  Google Scholar 

  70. Terazima, M. (2021). Spectrally silent protein reaction dynamics revealed by time-resolved thermodynamics and diffusion techniques. Accounts of Chemical Research, 54(9), 2238–2248. https://doi.org/10.1021/acs.accounts.1c00113

    Article  CAS  PubMed  Google Scholar 

  71. Kondoh, M., & Terazima, M. (2017). Conformational and intermolecular interaction dynamics of photolyase/cryptochrome proteins monitored by the time-resolved diffusion technique. Photochemistry and Photobiology, 93(1), 15–25. https://doi.org/10.1111/php.12681

    Article  CAS  PubMed  Google Scholar 

  72. Inoue, K., Baden, N., & Terazima, M. (2005). Diffusion coefficient and the secondary structure of poly-L-glutamic acid in aqueous solution. The Journal of Physical Chemistry B, 109(47), 22623–22628. https://doi.org/10.1021/JP052897Y

    Article  CAS  PubMed  Google Scholar 

  73. Cussler, E. L. (2009). Diffusion. Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9780511805134

    Book  Google Scholar 

  74. Iwata, K., Terazima, M., & Masuhara, H. (2018). Novel physical chemistry approaches in biophysical researches with advanced application of lasers: Detection and manipulation. Biochimica et Biophysica Acta: General Subjects, 1862(2), 335–357. https://doi.org/10.1016/J.BBAGEN.2017.11.003

    Article  CAS  PubMed  Google Scholar 

  75. Terazima, M. (2021). Time-resolved detection of association/dissociation reactions and conformation changes in photosensor proteins for application in optogenetics. Biophysical Reviews, 13(6), 1053–1059. https://doi.org/10.1007/s12551-021-00868-9

    Article  CAS  PubMed  Google Scholar 

  76. Schroeder, C., Werner, K., Otten, H., Krätzig, S., Schwalbe, H., & Essen, L. O. (2008). Influence of a joining helix on the BLUF domain of the YcgF photoreceptor from Escherichia coli. ChemBioChem, 9(15), 2463–2473. https://doi.org/10.1002/cbic.200800280

    Article  CAS  PubMed  Google Scholar 

  77. Khrenova, M., Domratcheva, T., Grigorenko, B., & Nemukhin, A. (2011). Coupling between the BLUF and EAL domains in the blue light-regulated phosphodiesterase BlrP1. Journal of Molecular Modeling, 17(7), 1579–1586. https://doi.org/10.1007/s00894-010-0842-1

    Article  CAS  PubMed  Google Scholar 

  78. Ren, S., Sawada, M., Hasegawa, K., Hayakawa, Y., Ohta, H., & Masuda, S. (2012). A PixD–PapB chimeric protein reveals the function of the BLUF domain C-terminal α-helices for light signal transduction. Plant and Cell Physiology, 53(9), 1638–1647. https://doi.org/10.1093/pcp/pcs108

    Article  CAS  PubMed  Google Scholar 

  79. Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., et al. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873), 583–589. https://doi.org/10.1038/S41586-021-03819-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Winkler, A., Udvarhelyi, A., Hartmann, E., Reinstein, J., Menzel, A., Shoeman, R. L., & Schlichting, I. (2014). Characterization of elements involved in allosteric light regulation of phosphodiesterase activity by comparison of different functional BlrP1 states. Journal of Molecular Biology, 426(4), 853–868. https://doi.org/10.1016/j.jmb.2013.11.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Hasegawa, K., Masuda, S., & Ono, T. A. (2006). Light induced structural changes of a full-length protein and its BLUF domain in YcgF(Blrp), a blue-light sensing protein that uses FAD (BLUF). Biochemistry, 45(11), 3785–3793. https://doi.org/10.1021/bi051820x

    Article  CAS  PubMed  Google Scholar 

  82. Shibata, K., Nakasone, Y., & Terazima, M. (2021). Enzymatic activity of the blue light-regulated phosphodiesterase BlrP1 from Klebsiella pneumoniae shows a nonlinear dependence on light intensity. FEBS Letters, 595(10), 1473–1479. https://doi.org/10.1002/1873-3468.14073

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge all authors who have contributed to the papers cited in this review. This work was supported by a Grant-in-aid for Scientific Research on Innovative Areas (research in a proposed research area) (Nos. JP20107003, and JP25102004) and a Grant-in-aid for Scientific Research (17H03008, 21H01885, 21K19218 to M.T. and 18H045522, 20H04708 to Y.N.) from MEXT/JSPS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahide Terazima.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Ethics approval

Not applicable.

Additional information

This publication is dedicated to Prof. Silvia E. Braslavsky, a pioneer in photobiology and photobiophysics, on the occasion of her 80th birthday.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakasone, Y., Terazima, M. Time-resolved diffusion reveals photoreactions of BLUF proteins with similar functional domains. Photochem Photobiol Sci 21, 493–507 (2022). https://doi.org/10.1007/s43630-022-00214-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-022-00214-2

Keywords

Navigation