Skip to main content
Log in

Isomerization kinetics of bacteriochlorophyll b and bacteriopheophytin b under acidic conditions

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Bacteriochlorophyll (BChl) b has a unique π-conjugation system, in which the bacteriochlorin macrocycle is conjugated with the C8-ethylidene group. This π-system is converted easily to the chlorin macrocycle. However, the effects of the central magnesium in BChl b on this conversion are unclear. In this study, the isomerization kinetics of BChl b and its demetalated pigment, bacteriopheophytin (BPhe) b, was analyzed under weakly acidic conditions. BChl b exhibited faster acid-induced isomerization than BPhe b. These results were attributed to the stabilization of a cationic intermediate, whose C8-ethylidene group is protonated, during the isomerization of BChl b compared to BPhe b because of a difference in the electron densities of the π-conjugation systems between BChl b and BPhe b. High-performance liquid chromatography analyses indicated that BChl b was primarily isomerized to 3-acetyl Chl a, followed by demetalation. The reaction order was due to the slower demetalation kinetics of metallobacteriochlorins than metallochlorins. These results will be helpful for handling unstable BChl b and BPhe b. The reaction properties of BChl b and BPhe b demonstrated here will be helpful for understanding the in vivo formation of BPhe b, which acts as the primary electron acceptor in photosynthetic reaction center complexes in BChl b-containing purple photosynthetic bacteria.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AcChl:

3-Acetyl chlorophyll

AcPhe:

3-Acetyl pheophytin

BChl:

Bacteriochlorophyll

BPhe:

Bacteriopheophytin

Chl:

Chlorophyll

ESI:

Electrospray ionization

HPLC:

High-performance liquid chromatography

MS:

Mass spectrometry

RC:

Reaction center

References

  1. Scheer, H. (2006). An overview of chlorophylls and bacteriochlorophylls: Biochemistry, biophysics, functions and applications. In B. Grimm, R. J. Porra, W. Rüdiger, & H. Scheer (Eds.), Chlorophylls and bacteriochlorophylls: Biochemistry, biophysics, functions and applications (pp. 1–26). New York: Springer.

    Google Scholar 

  2. Tamiaki, H., & Kunieda, M. (2011). Photochemistry of chlorophylls and their analogs. In K. M. Kadish, K. M. Smith, & R. Guilard (Eds.), Handbook of Porphyrin Science (Vol. 11, pp. 223–290). World Scientific.

    Chapter  Google Scholar 

  3. Croce, R., & van Amerongen, H. (2014). Natural strategies for photosynthetic light harvesting. Nature Chemical Biology, 10, 492–501.

    Article  CAS  Google Scholar 

  4. Diers, J. R., Kirmaier, C., Taniguchi, M., Lindsey, J. S., Bocian, D. F., & Holten, D. (2021). A perspective on the redox properties of tetrapyrrole macrocycle. Physical Chemistry Chemical Physics, 23, 19130–19140.

    Article  CAS  Google Scholar 

  5. Hoogewerf, G. J., Jung, D. O., & Madigan, M. T. (2003). Evidence for limited species diversity of bacteriochlorophyll b-containing purple nonsulfur anoxygenic phototrophs in freshwater habitats. FEBS Microbiology Letters, 218, 359–364.

    Article  CAS  Google Scholar 

  6. Imhoff, J. F., Rahn, T., Künzel, S., & Neulinger, S. C. (2018). Photosynthesis is widely distributed among proteobacteria as demonstrated by the phylogeny of PufLM reaction center proteins. Frontiers in Microbiology, 8, 2679.

    Article  Google Scholar 

  7. Kimura, Y., Yamashita, T., Seto, R., Imanishi, M., Honda, M., Nakagawa, S., Saga, Y., Takenaka, S., Yu, L.-J., Madigan, M. T., & Wang-Otomo, Z.-Y. (2021). Circular dichroism and resonance Raman spectroscopies of bacteriochlorophyll b-containing LH1-RC complexes. Photosynthesis Research, 148, 77–86.

    Article  CAS  Google Scholar 

  8. Jay, F., Lambillotte, M., Stark, W., & Muhlethaler, K. (1984). The preparation and characterization of native photoreceptor units from the thylakoids of Rhodopseudomonas viridis. EMBO Journal, 3, 773–776.

    Article  CAS  Google Scholar 

  9. Tsukatani, Y., Yamamoto, H., Harada, J., Yoshitomi, T., Nomata, J., Kasahara, M., Mizoguchi, T., Fujita, Y., & Tamiaki, H. (2013). An unexpectedly branched biosynthetic pathway for bacteriochlorophyll b capable of absorbing near-infrared light. Scientific Reports, 3, 1217.

    Article  Google Scholar 

  10. Brockmann, H., Jr., & Lipinski, A. (1983). Bacteriochlorophyll g. A new bacteriochlorophyll from Heliobacterium chlorum. Archives of Microbiology, 136, 17–19.

    Article  CAS  Google Scholar 

  11. Michalski, T. J., Hunt, J. E., Bowman, M. K., Smith, U., Bardeen, K., Gest, H., Norris, J. R., & Katz, J. J. (1987). Bacteriochlorophyll g: Properties and some speculations on a possible primary role for bacteriochlorophylls b and g in the biosynthesis of chlorophylls. Proceedings of the National Academy of Sciences of the United States of America, 84, 2570–2574.

    Article  CAS  Google Scholar 

  12. Deisenhofer, J., Epp, O., Miki, K., Huber, R., & Michel, H. (1984). X-ray structure analysis of a membrane protein complex. Electron density map at 3 Å resolution and a model of the chromatophores of the photosynthetic reaction center from Rhodopseudomonas viridis. Journal of Molecular Biology, 180, 385–398.

    Article  CAS  Google Scholar 

  13. Qian, P., Siebert, C. A., Wang, P., Canniffe, D. P., & Hunter, C. N. (2018). Cryo-EM structure of the Blastochloris viridis LH1-RC complex at 2.9 Å. Nature, 556, 203–208.

    Article  CAS  Google Scholar 

  14. Beer-Romero, P., Favinger, J. L., & Gest, H. (1988). Distinctive properties of bacilliform photosynthetic heliobacteria. FEMS Microbiology Letters, 49, 451–454.

    Article  CAS  Google Scholar 

  15. Kobayashi, M., Hamano, T., Akiyama, M., Watanabe, T., Inoue, K., Oh-oka, H., Amesz, J., Yamamura, M., & Kise, H. (1998). Light-independent isomerization of bacteriochlorophyll g to chlorophyll a catalyzed by weak acid in vitro. Analytica Chimica Acta, 365, 199–203.

    Article  CAS  Google Scholar 

  16. Kobayashi, M., Yamamura, M., Akutsu, S., Miyake, J., Hara, M., Akiyama, M., & Kise, H. (1998). Successfully controlled isomerization and pheophytinization of bacteriochlorophyll b by weak acid in the dark in vitro. Analytica Chimica Acta, 361, 285–290.

    Article  CAS  Google Scholar 

  17. Kolbasov, D., Srivatsan, N., Ponomarenko, N., Jäger, M., & Norris, J. R., Jr. (2003). Modeling charge transfer in oxidized bacterial antenna complexes. The Journal of Physical Chemistry B, 107, 2386–2393.

    Article  CAS  Google Scholar 

  18. Kunieda, M., Mizoguchi, T., & Tamiaki, H. (2004). Synthesis and optical properties of stable 8-alkylidene-bacteriochlorins mimicking the molecular structures of natural bacteriochlorophylls-b and g. Tetrahedron, 60, 11349–11357.

    Article  CAS  Google Scholar 

  19. Ferlez, B., Dong, W., Siavashi, R., Redding, K., Hou, H. J. M., Golbeck, J. H., & van der Est, A. (2015). The effect of bacteriochlorophyll g oxidation on energy and electron transfer in reaction centers from Heliobacterium modesticaldum. The Journal of Physical Chemistry B, 119, 13714–13725.

    Article  CAS  Google Scholar 

  20. Saga, Y., Yamashita, M., Masaoka, Y., Hidaka, T., Imanishi, M., Kimura, Y., & Nagasawa, Y. (2021). Excitation energy transfer from bacteriochlorophyll b in the B800 site to B850 bacteriochlorophyll a in light-harvesting complex 2. The Journal of Physical Chemistry B, 125, 2009–2017.

    Article  CAS  Google Scholar 

  21. Mizoguchi, T., Oh-oka, H., & Tamiaki, H. (2005). Determination of stereochemistry of bacteriochlorophyll gF and 81-hydroxy-chlorophyll aF from Heliobacterium modesticaldum. Photochemistry and Photobiology, 81, 666–673.

    Article  CAS  Google Scholar 

  22. Saga, Y., Miura, R., Sadaoka, K., & Hirai, Y. (2011). Kinetic analysis of demetalation of synthetic zinc cyclic tetrapyrroles possessing an acetyl group at the 3-position: Effects of tetrapyrrole structures and peripheral substitution. The Journal of Physical Chemistry B, 115, 11757–11762.

    Article  CAS  Google Scholar 

  23. Saga, Y., Hirota, K., Harada, J., & Tamiaki, H. (2015). In vitro enzymatic activities of bacteriochlorophyll a synthase derived from the green sulfur photosynthetic bacterium Chlorobaculum tepidum. Biochemistry, 54, 4998–5005.

    Article  CAS  Google Scholar 

  24. Smith, J. R. L., & Calvin, M. (1966). Studies on the chemical and photochemical oxidation of bacteriochlorophyll. Journal of the American Chemical Society, 88, 4500–4506.

    Article  Google Scholar 

  25. Saga, Y., & Miyagi, K. (2018). Characterization of 3-acetyl chlorophyll a and 3-acetyl protochlorophyll a accommodated in the B800 binding sites in photosynthetic light-harvesting complex 2 in the purple photosynthetic bacterium Rhodoblastus acidophilus. Photochemistry and Photobiology, 94, 698–704.

    Article  CAS  Google Scholar 

  26. Oba, T., Masada, Y., & Tamiaki, H. (1997). Convenient preparation of pheophytin b from plant extract through the C7-reduced intermediate. Bulletin of the Chemical Society of Japan, 70, 1905–1909.

    Article  CAS  Google Scholar 

  27. Hirai, Y., Kashimura, K., & Saga, Y. (2011). Demetalation kinetics of chlorophyll derivatives possessing different substituents at the 7-position under acidic conditions. Photochemistry and Photobiology, 87, 302–307.

    Article  CAS  Google Scholar 

  28. Hynninen, P. H. (1991). Protonation–deprotonation equilibria in tetrapyrroles. Part 1. Protonation titrations of 132-(demethoxycarbonyl)pheophytin a in methanolic hydrochloric acid by electronic absorption spectroscopy. Journal of the Chemical Society, Perkin Transactions, 2, 669–678.

    Article  Google Scholar 

  29. Noy, D., Fiedor, L., Hartwich, G., Scheer, H., & Scherz, A. (1998). Metal-substituted bacteriochlorophylls. 2. Changes in redox potentials and electronic transition energies are dominated by intramolecular electrostatic interactions. Journal of the American Chemical Society, 120, 3684–3693.

    Article  CAS  Google Scholar 

  30. Kobayashi, M., Ohashi, S., Iwamoto, K., Shiraiwa, Y., Kato, Y., & Watanabe, T. (2007). Redox potential of chlorophyll d in vitro. Biochimica et Biophyica Acta, 1767, 596–602.

    Article  CAS  Google Scholar 

  31. Kobayashi, M., Yamamura, M., Akiyama, M., Kise, H., Inoue, K., Hara, M., Wakao, N., Yahara, K., & Watanabe, T. (1998). Acid resistance of Zn-bacteriochlorophyll a from an acidophilic bacterium Acidiphilium rubrum. Analytical Sciences, 14, 1149–1152.

    Article  CAS  Google Scholar 

Download references

Funding

This work was partially supported by Grants-in-Aid for Scientific Research (C) (JP18KT0094 and JP21K06104) from the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshitaka Saga.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 118 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takashima, Y., Saga, Y. Isomerization kinetics of bacteriochlorophyll b and bacteriopheophytin b under acidic conditions. Photochem Photobiol Sci 21, 1193–1199 (2022). https://doi.org/10.1007/s43630-022-00207-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-022-00207-1

Keywords

Navigation