Skip to main content
Log in

Investigation on the in vitro anti-Trichophyton activity of photosensitizers

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Onychomycosis is the most common disease caused by fungal nail infections, and often caused by dermatophytes. This infection is very resistant to antifungal treatments, and promising Photodynamic Therapy (PDT) mediated treatments has been presented as a multitarget tracking. Optimization of PDT guide for uptake time, concentration of photosensitizers (PS) and the light dose to inactivate Trichophyton mentagrophytes. Curcumin derivatives, porphyrin Chlorin e6 (CHL-E6) and Chlorin-P6-6-N-butylamide-7-methyl-ester (CHL-butyl) were evaluated. PS photobleaching was observed on the hyphae photosensitized over the time, correlating the PS concentration and light dose of antifungal PDT. Porphyrin, Curcumin, Chl-e6 and Chl-butyl concentrations of 2.5 µg/mL, 0.025 µg/mL, 10 µg/mL and 5 µg/mL respectively, under illumination of 10.5 J/cm2 were the best antifungal conditions found in the study. Curcumin, in low concentrations, and chlorin were the PSs with higher activity anti-T. mentagrophytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. D. P. Westerberg and M. J. Voyack, “P762” (2013).

  2. Shemer, A., et al. (2008). Onychomycosis: rationalization of topical treatment. The Israel Medical Association Journal, 10(6), 415–416.

    PubMed  Google Scholar 

  3. B. E. Elewski, “Onychomycosis: pathogenesis, diagnosis, and management.,” Clin. Microbiol. Rev. 11(3), 415–429 (1998) [9665975]

  4. A. Singal and D. Khanna, “Onychomycosis : Diagnosis and management,” Indian J. Dermatology, Venereol. Leprol. 77(6), 1–16 (2015) https://doi.org/10.4103/0378-6323.86475.

  5. Kharkwal, G. B., et al. (2012). Photodynamic therapy for infections: clinical applications. Lasers in Surgery and Medicine, 43(7), 755–767. https://doi.org/10.1002/lsm.21080.Photodynamic

    Article  Google Scholar 

  6. Huang, Z. (2005). A review of progress in clinical photodynamic therapy. Technology in Cancer Research & Treatment, 4(3), 283–293. https://doi.org/10.1177/153303460500400308

    Article  CAS  Google Scholar 

  7. Vatansever, F., et al. (2013). Antimicrobial strategies centered around reactive oxygen species—bactericidal antibiotics, photodynamic therapy, and beyond. FEMS Microbiology Reviews. https://doi.org/10.1111/1574-6976.12026

    Article  PubMed  Google Scholar 

  8. De Oliveira, K. T., et al. (2009). Synthesis of phthalocyanines-ALA conjugates: water-soluble compounds with low aggregation. Journal of Organic Chemistry, 74(20), 7962–7965. https://doi.org/10.1021/jo901633a

    Article  CAS  PubMed  Google Scholar 

  9. L. M. de Souza et al., “Efficacy of photodynamic therapy against larvae of Aedes aegypti: confocal microscopy and fluorescence-lifetime imaging,” Proc. SPIE 8947, Imaging, Manip. Anal. Biomol. Cells, Tissues XII 8947, 89472D-89472D – 9 (2014) https://doi.org/10.1117/12.2040420.

  10. Dovigo, L. N., et al. (2011). Investigation of the photodynamic effects of curcumin against Candida albicans. Photochemistry and Photobiology, 87(4), 895–903. https://doi.org/10.1111/j.1751-1097.2011.00937.x

    Article  CAS  PubMed  Google Scholar 

  11. Dovigo, L. N., et al. (2013). Curcumin-mediated photodynamic inactivation of Candida albicans in a murine model of oral candidiasis. Medical Mycology, 51(3), 243–251. https://doi.org/10.3109/13693786.2012.714081

    Article  CAS  PubMed  Google Scholar 

  12. Inada, N. M., et al. (2009). Treatment of vulvar/vaginal condyloma by HPV: developed instrumentation and clinical report. Prog. Biomed. Opt. Imaging, 7380, 1–9. https://doi.org/10.1117/12.823034

    Article  CAS  Google Scholar 

  13. Panhóca, V. H., et al. (2014). Enhancement of the photodynamic therapy effect on streptococcus mutans biofilm. J. Phys. Sci. Appl., 4(2), 107–114.

    Google Scholar 

  14. da Silva, A. P., et al. (2013). Fast elimination of onychomycosis by hematoporphyrin derivative-photodynamic therapy. Photodiagnosis and Photodynamic Therapy, 10(3), 328–330. https://doi.org/10.1016/j.pdpdt.2013.01.001

    Article  PubMed  Google Scholar 

  15. Ormond, A. B., & Freeman, H. S. (2013). Dye sensitizers for photodynamic therapy. Materials (Basel)., 6(3), 817–840. https://doi.org/10.3390/ma6030817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. M. P. Paz-cristobal, “In vitro effect photodynamic therapy with differents photosensitizers on cariogenic microorganisms In vitro effect photodynamic therapy with differents photosensitizers on cariogenic microorganisms” (2015) https://doi.org/10.1186/s12866-015-0524-3.

  17. Baltazar, L. M., et al. (2015). Antimicrobial photodynamic therapy: an effective alternative approach to control fungal infections. Frontiers in Microbiology. https://doi.org/10.3389/fmicb.2015.00202

    Article  PubMed  PubMed Central  Google Scholar 

  18. Uliana, M. P., et al. (2014). Photobiological characteristics of chlorophyll a derivatives as microbial PDT agents. Photochemical & Photobiological Sciences, 13, 1137–1145. https://doi.org/10.1039/c3pp50376c

    Article  CAS  Google Scholar 

  19. Smijs, T. G. M., et al. (2008). Morphological changes of the dermatophyte Trichophyton rubrum after photodynamic treatment: a scanning electron microscopy study. Medical Mycology. https://doi.org/10.1080/13693780701836977

    Article  PubMed  Google Scholar 

  20. Dahll, T. A., et al. (1994). Photocytotoxicity of curcumin. Photochemistry and Photobiology, 59(3), 290–294. https://doi.org/10.1111/j.1751-1097.1994.tb05036.x

    Article  Google Scholar 

  21. Khilov, A., et al. (2018). Estimation of chlorine-based photosensitizer penetration depth prior to PDT procedure from two-wavelength excitation fluorescence measurements. Optics InfoBase Conference Papers. https://doi.org/10.1364/TRANSLATIONAL.2018.JW3A.9

    Article  Google Scholar 

  22. Kumar, A., et al. (2014). Curcumin targets cell wall integrity via calcineurin-mediated signaling in candida albicans. Antimicrobial Agents and Chemotherapy. https://doi.org/10.1128/AAC.01385-13

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support provided by the São Paulo Research Foundation (FAPESP/CEPOF), Proc. Nº 13/07276-1 and 2011/19720-8 (FAPESP). The "National Counsel of Technological and Scientific Development" (CNPq/INCT Proc. Nº 573587/2008-6). The “Brazilian Innovation Agency” (FINEP Proc. Nº 01.09.0241.00. APS would like to thank the CNPq grants for her Scholarship received between 2010 and 2011 Proc. Nº 381132/2010-2. Blanco K. C. thanks FAPESP for Post-doc grant 2019/13569-8 and 2021/09952-0.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kate Cristina Blanco.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, A.P., Uliana, M.P., Guimarães, F.E.G. et al. Investigation on the in vitro anti-Trichophyton activity of photosensitizers. Photochem Photobiol Sci 21, 1185–1192 (2022). https://doi.org/10.1007/s43630-022-00205-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-022-00205-3

Keywords

Navigation