Skip to main content
Log in

Longer characteristic wavelength in a novel engineered photoprotein Mnemiopsin 2

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

We designed two mutants of photoprotein Mnemiopsin 2 (Mn2) including M52I and V144I, where the mutations were applied in the EF-hand loops I and III. Far-UV CD measurements demonstrated that the stability of the helices in the wild-type (WT) protein is greater compared with the mutants. Heat-induced denaturation experiments in the apo-form of photoproteins showed that WT Mn2 has higher value of the enthalpy change for the unfolding process, indicating that it has more stabilizing interaction compared with mutants. According to the activity measurement data, both mutants, particularly V144I have lower initial intensity as well as slower decay rate as compared with the WT photoprotein. Importantly, it was found that V144I variant shows 25 nm of red shift in the characteristic wavelengths as compared with the WT photoprotein. This finding can be considered as an advantage for in vivo application of photoprotein for imaging purposes. It concluded that this position on loop III of Mn2 is a hotspot point for characteristic wavelength determination. However, further research on this mutant is needed for making stable variants of Mn2 with novel optical features.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Haddock, S. H. D., Moline, M. A., & Case, J. F. (2010). Bioluminescence in the sea. Annual Review of Marine Science, 2, 443–493.

    Article  Google Scholar 

  2. Prendergast, F. G. (2000). Bioluminescence illuminated. Nature, 405, 291–292.

    Article  CAS  Google Scholar 

  3. Kaskova, Z. M., Tsarkova, A. S., & Yampolsky, I. V. (2016). 1001 lights: Luciferins, luciferases, their mechanisms of action and applications in chemical analysis, biology and medicine. Chemical Society Reviews, 45, 6048–6077.

    Article  CAS  Google Scholar 

  4. Rees, J. F., & Thompson, E. M. (1994). Photophores: The analysis of bioluminescent systems. Biochemistry Molecular Biology of Fishes, 3, 215–229.

    Article  CAS  Google Scholar 

  5. Burakova, L. P., & Vysotski, E. S. (2019). Recombinant Ca2+-regulated photoproteins of ctenophores: Current knowledge and application prospects. Applied Microbiology and Biotechnology, 103, 5929–5946.

    Article  CAS  Google Scholar 

  6. Deng, L., Markova, S. V., Vysotski, E. S., Liu, Z. J., Lee, J., Rose, J., & Wang, B. C. (2004). Crystal structure of a Ca2+-discharged photoprotein. Implications for mechanisms of the calcium trigger and bioluminescence. Journal of Biological Chemistry, 279, 33647–33652.

    Article  CAS  Google Scholar 

  7. Dikici, E., Qu, X., Rowe, L., Millner, L., Logue, C., Deo, S. K., Ensor, M., & Daunert, S. (2009). Aequorin variants with improved bioluminescence properties. Protein Engineering, Design & Selection, 22, 243–248.

    Article  CAS  Google Scholar 

  8. Blinks, J. R. (1990). Use of photoproteins as intracellular calcium indicators. Environment Health Perspectives, 84, 75–81.

    Article  CAS  Google Scholar 

  9. Stepanyuk, G. A., Liu, Z. J., Burakova, L. P., Lee, J., Rose, J., Vysotski, E. S., & Wang, B. C. (2013). Spatial structure of the novel light-sensitive photoprotein berovin from the ctenophore Beroe abyssicola in the Ca2 +-loaded apoprotein conformation state. Biochimica et Biophysica Acta (BBA) Proteins and Proteomics, 1834, 2139–2146.

    Article  CAS  Google Scholar 

  10. Burakova, L. P., Natashin, P. V., Malikova, N. P., Niu, F., Pu, M., Vysotski, E. S., & Liu, Z. J. (2016). All Ca2+-binding loops of light-sensitive ctenophore photoprotein berovin bind magnesium ions: The spatial structure of Mg2 +-loaded apo-berovin. Journal of Photochemistry and Photobiology, B: Biology, 154, 57–66.

    Article  CAS  Google Scholar 

  11. Head, J. F., Inouye, S., Teranishi, K., & Shimomura, O. (2000). The crystal structure of the photoprotein aequorin at 2.3 A resolution. Nature, 405, 372–376.

    Article  CAS  Google Scholar 

  12. Kawasaki, H., Nakayama, S., & Kretsinger, R. H. (1998). Classification and evolution of EF-hand proteins. BioMetals, 11, 277–295.

    Article  CAS  Google Scholar 

  13. Nelson, M. R., & Chazin, W. J. (1998). Structures of EF-hand Ca2+-binding proteins: Diversity in the organization, packing and response to Ca2+ binding. BioMetals, 11, 297–318.

    Article  CAS  Google Scholar 

  14. Grabarek, Z. (2006). Structural basis for diversity of the EF-hand calcium-binding proteins. Journal of Molecular Biology, 359, 509–525.

    Article  CAS  Google Scholar 

  15. Tricoire, L., Tsuzuki, K., Courjean, O., Gibelin, N., Bourout, G., Rossier, J., & Lambolez, B. (2006). Calcium dependence of aequorin bioluminescence dissected by random mutagenesis. Proceedings of the National Academy of Science U. S. A., 103, 9500–9505.

    Article  CAS  Google Scholar 

  16. Brini, M. (2008). Calcium-sensitive photoproteins. Methods, 46, 160–166.

    Article  CAS  Google Scholar 

  17. Ward, W. W., & Seliger, H. H. (1974). Properties of mnemiopsin and berovin, calcium-activated photoproteins from the ctenophores mnemiopsis species and beroe ovata. Biochemistry, 13, 1500–1510.

    Article  CAS  Google Scholar 

  18. Mao, D., Wu, W., Ji, S., Chen, C., Hu, F., Kong, D., Ding, D., & Liu, B. (2017). Chemiluminescence-guided cancer therapy using a chemiexcited photosensitizer. Chem, 3, 991–1007.

    Article  CAS  Google Scholar 

  19. Frank, L. A., Borisova, V. V., Markova, S. V., Malikova, N. P., Stepanyuk, G. A., & Vysotski, E. S. (2008). Violet and greenish photoprotein obelin mutants for reporter applications in dual-color assay. Analytical and Bioanalytical Chemistry, 391, 2223–2225.

    Article  Google Scholar 

  20. Rowe, L., Ensor, M., Mehl, R., & Daunert, S. (2010). Modulating the bioluminescence emission of photoproteins by in vivo site-directed incorporation of non-natural amino acids. ACS Chemical Biology, 5, 455–460.

    Article  CAS  Google Scholar 

  21. Rowe, L., Dikici, E., & Daunert, S. (2009). Engineering bioluminescent proteins: Expanding their analytical potential. Analytical Chemistry, 81, 8662–8668.

    Article  CAS  Google Scholar 

  22. Aghamaali, M. R., Jafarian, V., Sariri, R., Molakarimi, M., Rasti, B., Taghdir, M., Sajedi, R. H., & Hosseinkhani, S. (2011). Cloning, sequencing, expression and structural investigation of mnemiopsin from mnemiopsis leidyi: an attempt toward understanding Ca 2+- regulated photoproteins. Protein Journal, 30, 566–574.

    Article  CAS  Google Scholar 

  23. Ward, W. W., & Seliger, H. H. (1974). Extraction and purification of calcium-activated photoproteins from the ctenophores mnemiopsis species and beroe ovata. Biochemistry, 13, 1491–1499.

    Article  CAS  Google Scholar 

  24. Ghanbarlou, R. M., Shirdel, S. A., Jafarian, V., & Khalifeh, K. (2018). Molecular mechanisms governing the evolutionary conservation of Glycine in the 6th position of loops ΙΙΙ and ΙV in photoprotein mnemiopsin 2. Journal of Photochemistry Photobiology B Biology, 187, 18–24.

    Article  Google Scholar 

  25. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215, 403–410.

    Article  CAS  Google Scholar 

  26. Rice, P., Longden, L., & Bleasby, A. (2000). EMBOSS: The European molecular biology open software suite. Trends in Genetics, 16, 276–277.

    Article  CAS  Google Scholar 

  27. Higgins, D. G., Thompson, J. D., & Gibson, T. J. (1996). Using CLUSTAL for multiple sequence alignments. Methods in Enzymology, 266, 383–402.

    Article  CAS  Google Scholar 

  28. Gouet, P., Courcelle, E., Stuart, D. I., & Métoz, F. (1999). ESPript: Analysis of multiple sequence alignments in PostScript. Bioinformatics, 15, 305–308.

    Article  CAS  Google Scholar 

  29. Fiser, A., & Šali, A. (2003). MODELLER: generation and refinement of homology-based protein structure models. Methods in Enzymology, 374, 461–491.

    Article  CAS  Google Scholar 

  30. Head, J. F., Inouye, S., Teranishi, K., & Shimomura, O. (2000). The crystal structure of the photoprotein aequorin at 2.3 Å resolution. Nature, 405, 372–376.

    Article  CAS  Google Scholar 

  31. Shen, M.-Y., & Sali, A. (2006). Statistical potential for assessment and prediction of protein structures. Protein Science, 15, 2507–2524.

    Article  CAS  Google Scholar 

  32. Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera—a visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25, 1605–1612.

    Article  CAS  Google Scholar 

  33. Jafarian, V., Sariri, R., Hosseinkhani, S., Aghamaali, M. R., Sajedi, R. H., Taghdir, M., & Hassannia, S. (2011). A unique EF-hand motif in mnemiopsin photoprotein from Mnemiopsis leidyi: Implication for its low calcium sensitivity. Biochemical and Biophysical Research Communications, 413, 164–170.

    Article  CAS  Google Scholar 

  34. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  35. Inouye, S., & Sahara-miura, Y. (2016). Expression and characterization of EF-hand I loop mutants of aequorin replaced with other loop sequences of Ca2+-binding proteins: An approach to studying the EF-hand motif of proteins. Journal of Biochemistry, 160, 59–68.

    Article  CAS  Google Scholar 

  36. Inouye, S., & Sahara, Y. (2007). Expression, purification and characterization of a photoprotein, clytin, from Clytia gregarium. Protein Expression and Purification, 53, 384–389.

    Article  CAS  Google Scholar 

  37. Shirdel, S. A., & Khalifeh, K. (2019). Thermodynamics of protein folding: Methodology, data analysis and interpretation of data. European Biophysics Journal, 48, 305–316.

    Article  CAS  Google Scholar 

  38. Calcium dependence of aequorin bioluminescence dissected by random mutagenesis, Herring PJ. Some Featur. Biolumin. Radiol. Thalass. sp. Mar. (1979). Biol. 53213–16.

  39. Jafarian, V., Sajedi, R. H., Hosseinkhani, S., Sariri, R., Taghdir, M., Khalifeh, K., Vafa, M., & Aghamaali, M. R. (2018). Structural and functional consequences of EF-hand I recovery in mnemiopsin 2. International Journal of Biological Macromolecules, 118, 2006–2013.

    Article  CAS  Google Scholar 

  40. Vafa, M., Khalifeh, K., & Jafarian, V. (2018). Negative net charge of EF-hand loop I can affect both calcium sensitivity and substrate binding pattern in mnemiopsin 2. Photochemical & Photobiological Sciences, 17, 807–814.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the research council of the University of Zanjan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vahab Jafarian or Akram Shirdel.

Ethics declarations

Statements and declarations

Partial financial support was received from the research council of the University of Zanjan. The authors declare they have no financial interests, and they have no relevant financial or non-financial interests to disclose.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hematyar, M., Jafarian, V. & Shirdel, A. Longer characteristic wavelength in a novel engineered photoprotein Mnemiopsin 2. Photochem Photobiol Sci 21, 1031–1040 (2022). https://doi.org/10.1007/s43630-022-00191-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-022-00191-6

Keywords

Navigation