Skip to main content
Log in

Extreme dependence of Chloroflexus aggregans LOV domain thermo- and photostability on the bound flavin species

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Light-oxygen-voltage (LOV) domains are common photosensory modules that found many applications in fluorescence microscopy and optogenetics. Here, we show that the Chloroflexus aggregans LOV domain can bind different flavin species (lumichrome, LC; riboflavin, RF; flavin mononucleotide, FMN; flavin adenine dinucleotide, FAD) during heterologous expression and that its physicochemical properties depend strongly on the nature of the bound flavin. We show that whereas the dissociation constants for different chromophores are similar, the melting temperature of the protein reconstituted with single flavin species varies from ~ 60 °C for LC to ~ 81 °C for FMN, and photobleaching half-times vary almost 100-fold. These observations serve as a caution for future studies of LOV domains in non-native conditions yet raise the possibility of fine-tuning various properties of LOV-based fluorescent probes and optogenetic tools by manipulating the chromophore composition.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

CFP:

Cyan fluorescent protein

FAD:

Flavin adenine dinucleotide

FbFP:

Flavin-based fluorescent protein

FMN:

Flavin mononucleotide

GFP:

Green fluorescent protein

HPLC:

High-performance liquid chromatography

IPTG:

Isopropyl β-D-1-thiogalactopyranoside

LC:

Lumichrome

LOV:

Light-oxygen-voltage

PAS:

Per-Arnt-Sim

RF:

Riboflavin

RFP:

Red fluorescent protein

SEC:

Size-exclusion chromatography

YFP:

Yellow fluorescent protein

References

  1. Glantz, S. T., Carpenter, E. J., Melkonian, M., Gardner, K. H., Boyden, E. S., Wong, G.K.-S., & Chow, B. Y. (2016). Functional and topological diversity of LOV domain photoreceptors. PNAS, 113(11), E1442–E1451. https://doi.org/10.1073/pnas.1509428113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Losi, A., & Gärtner, W. (2017). Solving blue light riddles: New Lessons From Flavin-Binding LOV photoreceptors. Photochemistry and Photobiology, 93(1), 141–158. https://doi.org/10.1111/php.12674

    Article  PubMed  CAS  Google Scholar 

  3. Imaizumi, T., Tran, H. G., Swartz, T. E., Briggs, W. R., & Kay, S. A. (2003). FKF1 is essential for photoperiodic-specific light signalling in Arabidopsis. Nature, 426, 302–306. https://doi.org/10.1038/nature02090

    Article  PubMed  CAS  Google Scholar 

  4. Liscum, E., & Briggs, W. R. (1995). Mutations in the NPH1 locus of Arabidopsis disrupt the perception of phototropic stimuli. The Plant Cell, 7(4), 473–485. https://doi.org/10.1105/tpc.7.4.473

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Huala, E., Oeller, P. W., Liscum, E., Han, I.-S., Larsen, E., & Briggsll, W. R. (1997). Arabidopsis NPHl: A protein kinase with a putative redox-sensing domain. Science (80-), 278(5346), 2120–2123. https://doi.org/10.1126/science.278.5346.2120

    Article  CAS  Google Scholar 

  6. Swartz, T. E., Tseng, T. S., Frederickson, M. A., Paris, G., Comerci, D. J., Rajashekara, G., Kim, J.-G., Mudgett, M. B., Splitter, G. A., Ugalde, R. A., Goldbaum, F. A., Briggs, W. R., & Bogomolni, R. A. (2007). Blue-light-activated histidine kinases: two-component sensors in bacteria. Science (80-), 317(5841), 1090–1093. https://doi.org/10.1126/science.1144306

    Article  CAS  Google Scholar 

  7. Ávila-Pérez, M., Hellingwerf, K. J., & Kort, R. (2006). Blue light activates the sigma B-dependent stress response of Bacillus subtilis via YtvA. Journal of Bacteriology, 188(17), 6411–6414. https://doi.org/10.1128/JB.00716-06

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Henry, J. T., & Crosson, S. (2011). Ligand-binding PAS domains in a genomic, cellular, and structural context. Annual Review of Microbiology, 65, 261–286. https://doi.org/10.1146/annurev-micro-121809-151631

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Anderson, N. T., Weyant, K. B., & Mukherjee, A. (2020). Characterization of flavin binding in oxygen-independent fluorescent reporters. AIChE Journal, 66(12), e17083. https://doi.org/10.1002/aic.17083

    Article  PubMed  CAS  Google Scholar 

  10. Dorn, M., Jurk, M., Wartenberg, A., Hahn, A., & Schmieder, P. (2013). LOV Takes a pick: thermodynamic and structural aspects of the flavin-LOV-interaction of the blue-light sensitive photoreceptor YtvA from Bacillus subtilis. PLoS ONE, 8(11), e81268. https://doi.org/10.1371/journal.pone.0081268

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Arinkin, V., Granzin, J., Röllen, K., Krauss, U., Jaeger, K.-E., Willbold, D., & Batra-Safferling, R. (2017). Structure of a LOV protein in apo-state and implications for construction of LOV-based optical tools. Science and Reports, 7, 42971. https://doi.org/10.1038/srep42971

    Article  CAS  Google Scholar 

  12. Mathes, T., Vogl, C., Stolz, J., & Hegemann, P. (2009). In vivo generation of flavoproteins with modified cofactors. Journal of Molecular Biology, 385(5), 1511–1518. https://doi.org/10.1016/j.jmb.2008.11.001

    Article  PubMed  CAS  Google Scholar 

  13. Silva-Junior, M. R., Mansurova, M., Gärtner, W., & Thiel, W. (2013). Photophysics of structurally modified flavin derivatives in the blue-light photoreceptor YtvA: A combined experimental and theoretical study. ChemBioChem, 14(13), 1648–1661. https://doi.org/10.1002/cbic.201300217

    Article  CAS  Google Scholar 

  14. Kalvaitis, M. E., Johnson, L. A., Mart, R. J., Rizkallah, P., & Allemann, R. K. (2019). A noncanonical chromophore reveals structural rearrangements of the light-oxygen-voltage domain upon photoactivation. Biochemistry, 58(22), 2608–2616. https://doi.org/10.1021/acs.biochem.9b00255

    Article  PubMed  CAS  Google Scholar 

  15. Mansurova, M., Scheercousse, P., Simon, J., Kluth, M., & Gärtner, W. (2011). Chromophore exchange in the blue light-sensitive photoreceptor YtvA from Bacillus subtilis. ChemBioChem, 12(4), 641–646. https://doi.org/10.1002/cbic.201000515

    Article  PubMed  CAS  Google Scholar 

  16. Mansurova, M., Simon, J., Salzmann, S., Marian, C. M., & Gärtner, W. (2013). Spectroscopic and theoretical study on electronically modified chromophores in LOV domains: 8-bromo- and 8-trifluoromethyl-substituted flavins. ChemBioChem, 14(5), 645–654. https://doi.org/10.1002/cbic.201200670

    Article  PubMed  CAS  Google Scholar 

  17. Richert, S., Chen, J., Pompe, N., Radtke, V., Lllarionov, B., Fischer, M., Bacher, A., & Weber, S. (2019). Influence of the cofactor structure on the photophysical processes initiating signal transduction in a phototropin-derived LOV domain. The Journal of Chemical Physics. https://doi.org/10.1063/1.5131856

    Article  PubMed  Google Scholar 

  18. Tyagi, A., Penzkofer, A., Mathes, T., & Hegemann, P. (2010). Photophysical characterisation and photo-cycle dynamics of LOV1-his domain of phototropin from Chlamydomonas reinhardtii with roseoflavin monophosphate cofactor. Journal of Photochemistry and Photobiology B, 101(1), 76–88. https://doi.org/10.1016/j.jphotobiol.2010.06.014

    Article  CAS  Google Scholar 

  19. Pudasaini, A., El-Arab, K. K., & Zoltowski, B. D. (2015). LOV-based optogenetic devices: Light-driven modules to impart photoregulated control of cellular signaling. Frontiers in Molecular Biosciences, 2, 1–15. https://doi.org/10.3389/fmolb.2015.00018

    Article  CAS  Google Scholar 

  20. Losi, A., Gardner, K. H., & Möglich, A. (2018). Blue-light receptors for optogenetics. Chemical Reviews, 118(21), 10659–10709. https://doi.org/10.1021/acs.chemrev.8b00163

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Chia, H. E., Marsh, E. N. G., & Biteen, J. S. (2019). Extending fluorescence microscopy into anaerobic environments. Current Opinion in Chemical Biology, 51, 98–104. https://doi.org/10.1016/j.cbpa.2019.05.008

    Article  PubMed  CAS  Google Scholar 

  22. Mukherjee, A., & Schroeder, C. M. (2015). Flavin-based fluorescent proteins: emerging paradigms in biological imaging. Current Opinion in Biotechnology, 31, 16–23. https://doi.org/10.1016/j.copbio.2014.07.010

    Article  PubMed  CAS  Google Scholar 

  23. Chapman, S., Faulkner, C., Kaiserli, E., Garcia-Mata, C., Savenkov, E. I., Roberts, A. G., Oparka, K. J., & Christie, J. M. (2008). The photoreversible fluorescent protein ILOV outperforms GFP as a reporter of plant virus infection. PNAS, 105(50), 20038–20043. https://doi.org/10.1073/pnas.0807551105

    Article  PubMed  PubMed Central  Google Scholar 

  24. Drepper, T., Eggert, T., Circolone, F., Heck, A., Krauß, U., Guterl, J.-K., Wendorff, M., Losi, A., Gärtner, W., & Jaeger, K.-E. (2007). Reporter proteins for in vivo fluorescence without oxygen. Nature Biotechnology, 25(4), 443–445. https://doi.org/10.1038/nbt1293

    Article  PubMed  CAS  Google Scholar 

  25. Ozbakir, H. F., Anderson, N. T., Fan, K.-C., & Mukherjee, A. (2020). Beyond the green fluorescent protein: Biomolecular reporters for anaerobic and deep-tissue imaging. Bioconjugate Chemistry, 31(2), 293–302. https://doi.org/10.1021/acs.bioconjchem.9b00688

    Article  PubMed  CAS  Google Scholar 

  26. Daniel, R. M., Cowan, D. A., Morgan, H. W., & Curran, M. P. (1982). A correlation between protein thermostability and resistance to proteolysis. The Biochemical Journal, 207(3), 641–644. https://doi.org/10.1042/bj2070641

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Parsell, D. A., & Sauer, R. T. (1989). The structural stability of a protein is an important determinant of its proteolytic susceptibility in Escherichia coli. Journal of Biological Chemistry, 264(13), 7590–7595. https://doi.org/10.1016/s0021-9258(18)83275-6

    Article  CAS  Google Scholar 

  28. Bloom, J. D., Labthavikul, S. T., Otey, C. R., & Arnold, F. H. (2006). Protein stability promotes evolvability. Proceedings of the National academy of Sciences of the United States of America, 103(15), 5869–5874. https://doi.org/10.1073/pnas.0510098103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Wingen, M., Jaeger, K.-E., Gensch, T., & Drepper, T. (2017). Novel thermostable flavin-binding fluorescent proteins from thermophilic organisms. Photochemistry and Photobiology, 93(3), 849–856. https://doi.org/10.1111/php.12740

    Article  PubMed  CAS  Google Scholar 

  30. Nazarenko, V. V., Remeeva, A., Yudenko, A., Kovalev, K., Dubenko, A., Goncharov, I. M., Kuzmichev, P., Rogachev, A. V., Buslaev, P., Borshchevskiy, V., Mishin, A., Dhoke, G. V., Schwaneberg, U., Davari, M. D., Jaeger, K.-E., Krauss, U., Gordeliy, V., & Gushchin, I. (2019). A Thermostable flavin-based fluorescent protein from: Chloroflexus Aggregans: a framework for ultra-high resolution structural studies. Photochemical and Photobiological Sciences, 18(7), 1793–1805. https://doi.org/10.1039/c9pp00067d

    Article  PubMed  CAS  Google Scholar 

  31. Remeeva, A., Nazarenko, V. V., Goncharov, I. M., Yudenko, A., Smolentseva, A., Semenov, O., Kovalev, K., Gülbahar, C., Schwaneberg, U., Davari, M. D., Gordeliy, V., & Gushchin, I. (2020). Effects of proline substitutions on the thermostable lov domain from Chloroflexus Aggregans. Crystals, 10(4), 256. https://doi.org/10.3390/cryst10040256

    Article  CAS  Google Scholar 

  32. Remeeva, A., Nazarenko, V. V., Kovalev, K., Goncharov, I. M., Yudenko, A., Astashkin, R., Gordeliy, V., & Gushchin, I. (2021). Insights into the mechanisms of light-oxygen-voltage domain color tuning from a set of high-resolution X-ray structures. Proteins Structure Function and Bioinformatics. https://doi.org/10.1002/prot.26078

    Article  Google Scholar 

  33. Röllen, K., Granzin, J., Remeeva, A., Davari, M. D., Gensch, T., Nazarenko, V. V., Kovalev, K., Bogorodskiy, A., Borshchevskiy, V., Hemmer, S., Schwaneberg, U., Gordeliy, V., Jaeger, K. E., Batra-Safferling, R., Gushchin, I., & Krauss, U. (2021). The molecular basis of spectral tuning in blue- and red-shifted flavin-binding fluorescent proteins. Journal of Biological Chemistry, 296, 100662. https://doi.org/10.1016/j.jbc.2021.100662

    Article  CAS  Google Scholar 

  34. Yudenko, A., Smolentseva, A., Maslov, I., Semenov, O., Goncharov, I. M., Nazarenko, V. V., Maliar, N. L., Borshchevskiy, V., Gordeliy, V., Remeeva, A., & Gushchin, I. (2021). Rational design of a split flavin-based fluorescent reporter. ACS Synthetic Biology, 10(1), 72–83. https://doi.org/10.1021/acssynbio.0c00454

    Article  PubMed  CAS  Google Scholar 

  35. Holzer, W., Shirdel, J., Zirak, P., Penzkofer, A., Hegemann, P., Deutzmann, R., & Hochmuth, E. (2005). Photo-induced degradation of some flavins in aqueous solution. Chemical Physics, 308(1–2), 69–78. https://doi.org/10.1016/j.chemphys.2004.08.006

    Article  CAS  Google Scholar 

  36. Torra, J., Lafaye, C., Signor, L., Aumonier, S., Flors, C., Shu, X., Nonell, S., Gotthard, G., & Royant, A. (2019). Tailing MiniSOG: Structural bases of the complex photophysics of a flavin-binding singlet oxygen photosensitizing protein. Science and Reports, 9(1), 1–10. https://doi.org/10.1038/s41598-019-38955-3

    Article  Google Scholar 

  37. Kopka, B., Magerl, K., Savitsky, A., Davari, M. D., Röllen, K., Bocola, M., Dick, B., Schwaneberg, U., Jaeger, K. E., & Krauss, U. (2017). Electron transfer pathways in a light, oxygen, voltage (LOV) protein devoid of the photoactive cysteine. Science and Reports, 7(1), 1–16. https://doi.org/10.1038/s41598-017-13420-1

    Article  CAS  Google Scholar 

  38. Schwerdtfeger, C., & Linden, H. (2003). VIVID is a flavoprotein and serves as a fungal blue light photoreceptor for photoadaptation. EMBO Journal, 22(18), 4846–4855. https://doi.org/10.1093/emboj/cdg451

    Article  CAS  Google Scholar 

  39. Song, X., Wang, Y., Shu, Z., Hong, J., Li, T., & Yao, L. (2013). Engineering a more thermostable blue light photo receptor Bacillus subtilis YtvA LOV Domain By A Computer Aided Rational Design Method. PLoS Computational Biology, 9(7), e1003129. https://doi.org/10.1371/journal.pcbi.1003129

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Higgins, S. A., Ouonkap, S. V. Y., & Savage, D. F. (2017). Rapid and programmable protein mutagenesis using plasmid recombineering. ACS Synthetic Biology, 6(10), 1825–1833. https://doi.org/10.1021/acssynbio.7b00112

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Hanada, S., Hiraishi, A., Shimada, K., & Matsuura, K. (1995). Chloroflexus Aggregans Sp. Nov., a filamentous phototrophic bacterium which forms dense cell aggregates by active gliding movement. International Journal of Systematic Bacteriology., 45(4), 676–681. https://doi.org/10.1099/00207713-45-4-676

    Article  PubMed  CAS  Google Scholar 

  42. Petrenčáková, M., Varhač, R., Kožár, T., Nemergut, M., Jancura, D., Schwer, M.-S., & Sedlák, E. (2020). Conformational properties of LOV2 domain and its C450A variant within Broad PH region. Biophysical Chemistry, 259, 106337. https://doi.org/10.1016/j.bpc.2020.106337

    Article  PubMed  CAS  Google Scholar 

  43. Zoltowski, B. D., Schwerdtfeger, C., Widom, J., Loros, J. J., Bilwes, A. M., Dunlap, J. C., & Crane, B. R. (2007). Conformational switching in the fungal light sensor vivid. Science (80-), 316(5827), 1054–1057. https://doi.org/10.1126/science.1137128

    Article  CAS  Google Scholar 

  44. He, Q., Cheng, P., Yang, Y., Wang, L., Gardner, K. H., & Liu, Y. (2002). White collar-1, a DNA binding transcription factor and a light sensor. Science (80-), 297(5582), 840–843. https://doi.org/10.1126/science.1072795

    Article  CAS  Google Scholar 

  45. Sikorska, E., Khmelinskii, I. V., Prukała, W., Williams, S. L., Patel, M., Worrall, D. R., Bourdelande, J. L., Koput, J., & Sikorski, M. (2004). Spectroscopy and photophysics of lumiflavins and lumichromes. Journal of Physical Chemistry, 108(9), 1501–1508. https://doi.org/10.1021/jp037048u

    Article  CAS  Google Scholar 

  46. Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J. Y., White, D. J., Hartenstein, V., Eliceiri, K., Tomancak, P., & Cardona, A. (2012). Fiji: An open-source platform for biological-image analysis. Nature Methods, 9(7), 676–682. https://doi.org/10.1038/nmeth.2019

    Article  PubMed  CAS  Google Scholar 

  47. Jarmoskaite, I., Alsadhan, I., Vaidyanathan, P. P., & Herschlag, D. (2020). How to measure and evaluate binding affinities. eLife, 9, e57264. https://doi.org/10.7554/ELIFE.57264

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Mikhail Shevtsov and Tatiana Kotova (Moscow Institute of Physics and Technology) for help with HPLC experiments and Nina Malyar (Moscow Institute of Physics and Technology) for help with pH titration experiments. We are grateful to Thomas Drepper (Institute of Molecular Enzyme Technology, HHU Düsseldorf, FZ-Jülich) for sharing the data on thermal stability of FbFPs from thermophilic microorganisms and Esther Knieps-Grünhagen (Institute of Molecular Enzyme Technology, HHU Düsseldorf, FZ-Jülich) for help with protein purification. The work was supported by the Russian Science Foundation, grant number 21-64-00018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Gushchin.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smolentseva, A., Goncharov, I.M., Yudenko, A. et al. Extreme dependence of Chloroflexus aggregans LOV domain thermo- and photostability on the bound flavin species. Photochem Photobiol Sci 20, 1645–1656 (2021). https://doi.org/10.1007/s43630-021-00138-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-021-00138-3

Keywords

Navigation