Skip to main content
Log in

Comparative visible-light driven selective oxidation to aldehydes of phenylmethanol (benzyl alcohol) and 4-pyridinylmethanol (4-pyridinecarbinol) on N-TiO2 and some commercial TiO2 samples

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Visible light (λ > 420 nm) selective photooxidation of phenylmethanol and 4-pyridinylmethanol in CH3CN to the corresponding aldehydes on N-TiO2 is compared with homemade undoped TiO2 (U-TiO2) and commercial undoped anatase specimens (such as PC105, PC500). Significant differences observed between N-TiO2 and undoped TiO2 are neither directly related to the surface area nor to the adsorbed amount of alcohol in the dark by surface area unit. FTIR and EPR spectroscopies are used to study the surface of TiO2 samples and to deeply understand the phenomena intervening in the visible-light photocatalytic activation of the doped vs the undoped oxides. In particular, it is shown that on N-TiO2 (and also on undoped PC105) strong Lewis acid sites (LAS) exist. The favorable role of LAS on the photocatalytic activity is illustrated by the higher photooxidation of 4-pyridinylmethanol vs phenylmethanol over N-TiO2 and PC105 in contrast to the other undoped samples, whose visible light sensitivity originates from a charge transfer between the alcohol and the solid. EPR spectra of N-TiO2 point out the presence of paramagnetic centers related to nitrogen that disappear when the photocatalyst is irradiated with visible light in the presence of alcohol, which starts its oxidative process. On the basis of presented results, we propose that doping with N introduces new intraband gap states that not only contribute to LAS and adsorption of alcohol but also are directly involved in the photochemical process occurring under visible light irradiation.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1

Similar content being viewed by others

References

  1. Etacheri, V., Di Valentin, C., Schneider, J., Bahnemann, D., & Pillai, S. C. (2015). Visible-light activation of TiO2 photocatalysts: advances in theory and experiments. Journal of Photochemistry & Photobiology C: Photochemistry Reviews, 25, 1–29.

    Article  CAS  Google Scholar 

  2. Wang, Z., Chen, C., Ma, W., & Zhao, J. (2013). Sensitization of titania semiconductor: a promising strategy to utilize visible light. In P. Pichat (Ed.), Photocatalysis and water purification: from fundamentals to recent applications (pp. 199–240). Wiley-VCH Verlag.

    Chapter  Google Scholar 

  3. Liu, S., Guo, E., & Yin, L. (2012). Tailored visible-light driven anatase TiO2 photocatalysts based on controllable metal ion doping and ordered mesoporous structure. Journal of Materials Chemistry, 22, 5031–5041.

    Article  CAS  Google Scholar 

  4. Di Paola, A., Bellardita, M., Marcì, G., Palmisano, L., Parrino, F., & Amadelli, R. (2011). Preparation of Sm-loaded brookite TiO2 photocatalysts. Catalysis Today, 161(1), 35–40.

    Article  Google Scholar 

  5. Asahi, R., Morikawa, T., Irie, H., & Ohwaki, T. (2014). Nitrogen-doped titanium dioxide as visible-light-sensitive photocatalyst: designs, developments, and prospects. Chemical Reviews, 114(19), 9824–9852.

    Article  PubMed  CAS  Google Scholar 

  6. Gomathi Devi, L., & Kavitha, R. (2014). Review on modified N-TiO2 for green energy applications under UV/visible light: selected results and reaction mechanisms. RSC Advances, 4, 28265–28299.

    Article  CAS  Google Scholar 

  7. Marschall, R., & Wang, L. (2014). Non-metal doping of transition metal oxides for visible-light photocatalysis. Catalysis Today, 225, 111–135.

    Article  CAS  Google Scholar 

  8. Bakar, S. A., & Ribeiro, C. (2016). Nitrogen-doped titanium dioxide: an overview of material design and dimensionality effect over modern applications. Journal of Photochemistry & Photobiology C: Photochemistry Reviews, 27, 1–29.

    Article  Google Scholar 

  9. Fang, W., Xing, M., & Zhang, J. (2017). Modifications on reduced titanium dioxide photocatalysts: A review. Journal of Photochemistry & Photobiology C: Photochemistry Reviews, 32, 21–39.

    Article  CAS  Google Scholar 

  10. Higashimoto, S. (2019). Titanium-dioxide-based visible-light-sensitive photocatalysis: mechanistic insight and applications. Catalysts, 9(2), 201.

    Article  Google Scholar 

  11. Chiesa, M., Livraghi, S., Paganini, M. C., Salvadori, E., & Giamello, E. (2020). Nitrogen-doped semiconducting oxides. Implications on photochemical, photocatalytic and electronic properties derived from EPR spectroscopy. Chemical Science, 11, 6623–6641.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Zhang, G., Kim, G., & Choi, W. (2014). Visible light driven photocatalysis mediated via ligand-to-metal charge transfer (LMCT): an alternative approach to solar activation of titania. Energy & Environmental Science, 7, 954–966.

    Article  CAS  Google Scholar 

  13. Amadelli, R., Samiolo, L., Maldotti, A., Molinari, A., Valigi, M., & Gazzoli, D. (2008). Preparation, characterisation and photocatalytic behaviour of Co-TiO2 with visible light response. International Journal of Photoenergy, 2008, 1–9.

    Article  Google Scholar 

  14. Gavartin, L., Shluger, A. L., Foster, A. S., & Bersuker, G. I. (2005). The role of nitrogen-related defects in high- dielectric oxides: density-functional studies. Journal of Applied Physics, 97(5), 13.

    Article  Google Scholar 

  15. Quesada-Cabrera, R., Sotelo-Vazquez, C., Darr, J. A., & Parkin, I. P. (2014). Critical influence of surface nitrogen species on the activity of N-doped TiO2 thin-films during photodegradation of stearic acid under UV light irradiation. Applied Catalysis B: Environmental, 160–161, 582–588.

    Article  Google Scholar 

  16. Mrowetz, M., Balcerski, W., Colussi, A. J., & Hoffmann, M. R. (2004). Oxidative power of nitrogen-doped TiO2 photocatalysts under visible illumination. Journal of Physical Chemistry B, 108(45), 17269–17273.

    Article  CAS  Google Scholar 

  17. Ansari, S. A., Khan, M. M., Ansari, M. O., & Cho, M. H. (2016). Nitrogen-doped titanium dioxide (N-doped TiO2) for visible light photocatalysis. New Journal of Chemistry, 40(4), 3000–3009.

    Article  CAS  Google Scholar 

  18. Amadelli, R., Samiolo, L., Borsa, M., Bellardita, M., & Palmisano, L. (2013). N-TiO2 photocatalysts highly active under visible irradiation for NOX abatement and 2-propanol oxidation. Catalysis Today, 206, 19–25.

    Article  CAS  Google Scholar 

  19. Shiraishi, Y., & Hirai, T. (2008). Selective organic transformations on titanium oxide-based photocatalysts. Journal of Photochemistry & Photobiology C: Photochemistry Reviews, 9(4), 157–170.

    Article  CAS  Google Scholar 

  20. Molinari, A., Maldotti, A., & Amadelli, R. (2013). Heterogeneous photocatalytic systems for partial and selective oxidation of alcohols and polyols. Current Organic Chemistry, 17(21), 2382–2405.

    Article  CAS  Google Scholar 

  21. Dohnálek, Z., Lyubinetsky, I., & Rousseau, R. (2010). Thermally-driven processes on rutile TiO2 (110)-(1×1): a direct view at the atomic scale. Progress in Surface Science, 85(5–8), 161–205.

    Article  Google Scholar 

  22. Samiolo, L., Valigi, M., Gazzoli, D., & Amadelli, R. (2010). Photo-electro catalytic oxidation of aromatic alcohols on visible light-absorbing nitrogen-doped TiO2. Electrochimica Acta, 55(26), 7788–7795.

    Article  CAS  Google Scholar 

  23. Li, R., Kobayashi, H., Guo, J., & Fan, J. (2011). Visible-light induced high-yielding benzyl alcohol-to-benzaldehyde transformation over mesoporous crystalline TiO2: a self-adjustable photo-oxidation system with controllable hole-generation. Journal of Physical Chemistry C, 115(47), 23408–23416.

    Article  CAS  Google Scholar 

  24. Martra, G. (2000). Lewis acid and base sites at the surface of microcrystalline TiO2 anatase: relationships between surface morphology and chemical behaviour. Applied Catalysis A: General, 200(1–2), 275–285.

    Article  CAS  Google Scholar 

  25. Corma, A., & García, H. (2002). Lewis acids as catalysts in oxidation reactions: From homogeneous to heterogeneous systems. Chemical Reviews, 102(10), 3837–3892.

    Article  PubMed  CAS  Google Scholar 

  26. Metiu, H., Chretien, S., Hu, Z., Li, B., & Sun, X. (2012). Chemistry of Lewis acid-base pairs on oxide surfaces. Journal of Physical Chemistry C, 116(19), 10439–10450.

    Article  CAS  Google Scholar 

  27. Liang, S., Wen, L., Lin, S., Bi, J., Feng, P., Fu, X., & Wu, L. (2014). Monolayer HNb3O8 for selective photocatalytic oxidation of benzylic alcohols with visible light response. Angewandte Chemie International Edition, 53(11), 2951–2955.

    Article  PubMed  CAS  Google Scholar 

  28. Koito, Y., Rees, G. J., Hanna, J. V., Li, M. M. J., Peng, Y.-K., Puchtler, T., Taylor, R., Wang, T., Kobayashi, H., Teixeira, I. F., Khan, M. A., Kreissl, H. T., & Edman Tsang, S. C. (2017). Structure-activity correlations for Brønsted acid, Lewis acid and photo- catalysed reactions of exfoliated crystalline niobium oxides. ChemCatChem, 9(1), 144–154.

    Article  CAS  Google Scholar 

  29. Agrios, A. G., & Pichat, P. (2006). Recombination rate of photogenerated charges versus surface area: opposing effects of TiO2 sintering temperature on photocatalytic removal of phenol, anisole, and pyridine in water. Journal of Photochemistry & Photobiology A: Chemistry, 180(1–2), 130–135.

    Article  CAS  Google Scholar 

  30. Ryu, J., & Choi, W. (2008). Substrate-specific photocatalytic activities of TiO2 and multiactivity test for water treatment application. Environmental Science & Technology, 42(1), 294–300.

    Article  CAS  Google Scholar 

  31. Guerrini, E., & Trasatti, S. (2006). Recent developments in understanding factors of electrocatalysis. Russian Journal of Electrochemistry, 42, 1017–1025.

    Article  CAS  Google Scholar 

  32. Kislenko, S. A., Amirov, R. H., & Samoylov, I. S. (2013). Effect of cations on the TiO2/acetonitrile interface structure: a molecular dynamics study. Journal of Physical Chemistry C, 117(20), 10589–10596.

    Article  CAS  Google Scholar 

  33. Davydov, A. (2003). Molecular spectroscopy of oxide catalyst surfaces. John Wiley & Sons Ltd Ed.

    Book  Google Scholar 

  34. Araujo, Z., Mendive, C. B., Garcìa Rodenas, L. A., Morando, P. J., Regazzoni, A. E., Blesa, M. A., & Bahnemann, D. (2005). FT-IR–ATR as a tool to probe photocatalytic interfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 265(1–3), 73–80.

    Article  CAS  Google Scholar 

  35. Primet, M., Pichat, P., & Mathieu, M.-V. (1971). Infrared study of the surface of titanium dioxides. I. Hydroxyl groups. Journal of Physical Chemistry, 75, 1216–1220.

    Article  CAS  Google Scholar 

  36. Erdem, B., Hunsicker, R. R. A., Simmons, G. W., Sudol, E. D., Dimonie, V. L., & El-Aasser, M. S. (2001). XPS and FTIR surface characterization of TiO2 particles used in polymer encapsulation. Langmuir, 17(9), 2664–2669.

    Article  CAS  Google Scholar 

  37. Szczepankiewicz, S. H., Colussi, A. J., & Hoffmann, M. R. (2000). Infrared spectra of photoinduced species on hydroxylated titania surfaces. Journal of Physical Chemistry B, 104(42), 9842–9850.

    Article  CAS  Google Scholar 

  38. Zhuang, J., Rusu, C. N., & Yates, J. T., Jr. (1999). Adsorption and photooxidation of CH3CN on TiO2. Journal of Physical Chemistry B, 103(33), 6957–6967.

    Article  CAS  Google Scholar 

  39. Raskó, J., & Kiss, J. (2006). Adsorption and catalytic reactions of acetonitrile and acetonitrile–oxygen mixture on TiO2-supported rhodium catalysts. Applied Catalysis A: General, 303(1), 56–61.

    Article  Google Scholar 

  40. Busca, G. (1999). The surface acidity of solid oxides and its characterization by IR spectroscopic methods. An attempt at systematization. Physical Chemistry Chemical Physics, 1(5), 723–736.

    Article  CAS  Google Scholar 

  41. Pichat, P., Mathieu, M.-V., & Imelik, B. (1969). Étude par spectrométrie infrarouge de l’adsorption de la pyridine et de la pyridine deutériée sur une silice amorphe, une alumine et un catalyseur silice-alumine. Bulletin de la Sociétè Chimique de France, 8, 2611.

    Google Scholar 

  42. Bezrodna, T., Puchkovska, G., Shimanovska, V., Chashechnikova, I., Khalyavka, T., & Baran, J. (2003). Pyridine-TiO2 surface interaction as a probe for surface active centers analysis. Applied Surface Science, 214(1–4), 222–231.

    Article  CAS  Google Scholar 

  43. Héroguel, F., Silvioli, L., Du, Y.-P., & Luterbacher, J. S. (2018). Controlled deposition of titanium oxide overcoats by non-hydrolytic sol gel for improved catalyst selectivity and stability. Journal of Catalysis, 358, 50–61.

    Article  Google Scholar 

  44. Barzetti, T., Selli, E., Moscotti, D., & Forni, L. (1996). Pyridine and ammonia as probes for FTIR analysis of solid acid catalysts. Journal of the Chemical Society, Faraday Transactions, 92(8), 1401–1407.

    Article  CAS  Google Scholar 

  45. Myers, T. L., Brauer, C. S., Su, Y.-F., Blake, T. A., Tonkyn, R. G., Ertel, A. B., Johnson, T. J., & Richardson, R. L. (2015). Quantitative reflectance spectra of solid powders as a function of particle size. Applied Optics, 54(15), 4863–4875.

    Article  PubMed  CAS  Google Scholar 

  46. Mino, L., Negri, C., Santalucia, R., Cerrato, G., Spoto, G., & Martra, G. (2020). Morphology, surface structure and water adsorption properties of TiO2 nanoparticles: a comparison of different commercial samples. Molecules, 25(20), 4605.

    Article  PubMed Central  CAS  Google Scholar 

  47. Kim, Y. K., Kay, B. D., White, J. M., & Dohnalek, Z. (2007). Alcohol chemistry on rutile TiO2(110): The influence of alkyl substituents on reactivity and selectivity. The Journal of Physical Chemistry C, 111(49), 18236–18242.

    Article  CAS  Google Scholar 

  48. Li, C.-J., Xu, G.-R., Zhang, B., & Gong, J. R. (2012). High selectivity in visible-light-driven partial photocatalytic oxidation of benzyl alcohol into benzaldehyde over single-crystalline rutile TiO2 nanorods. Applied Catalysis B: Environmental, 115–116, 201–208.

    Article  Google Scholar 

  49. Zhao, L., Gu, F. L., Kim, M., & Zhang, R.-Q. (2017). DFT study of benzyl alcohol/TiO2 interfacial surface complex: Reaction pathway and mechanism of visible light absorption. Journal of Molecular Modeling, 23, 285.

    Article  PubMed  Google Scholar 

  50. Fridman, V. Z., Davydov, A. A., & Titievsky, K. (2004). Dehydrogenation of cyclohexanol on copper-containing catalysts: II. The pathways of the cyclohexanol dehydrogenation reaction to cyclohexanone on copper-active sites in oxidation state Cu0 and Cu+. Journal of Catalysis, 222(2), 545–557.

    Article  CAS  Google Scholar 

  51. Lercher, J. A., Gründling, C., & Eder-Mirth, G. (1996). Infrared studies of the surface acidity of oxides and zeolites using adsorbed probe molecules. Catalysis Today, 27(3–4), 353–376.

    Article  CAS  Google Scholar 

  52. Higashimoto, S., Hatada, Y., Ishikawa, R., Azuma, M., Sakata, Y., & Kobayashi, H. (2013). Selective photocatalytic oxidation of benzyl amine by O2 into N-benzylidenebenzylamine on TiO2 using visible light. Current Organic Chemistry, 17(21), 2374–2381.

    Article  CAS  Google Scholar 

  53. Batzill, M., Morales, E. H., & Diebold, U. (2006). Influence of nitrogen doping on the defect formation and surface properties of TiO2 rutile and anatase. Physical Review Letters, 96(2), 026103.

    Article  PubMed  Google Scholar 

  54. Feng, C., Jin, Z., Zhang, J., Wu, Z., & Zhang, Z. (2010). Coaction of sub-band and doped nitrogen on visible light photoactivity of N-doped TiO2. Photochemistry and Photobiology, 86(6), 1222–1229.

    Article  PubMed  CAS  Google Scholar 

  55. Feng, C., Wang, Y., Jin, Z., Zhang, J., Zhang, S., Wu, Z., & Zhang, Z. (2008). Photoactive centers responsible for visible-light photoactivity of N-doped TiO2. New Journal of Chemistry, 32(6), 1038–1047.

    Article  CAS  Google Scholar 

  56. Foo, C., Li, Y., Lebedev, K., Chen, T., Day, S., Tang, C., & Tsang, S. C. E. (2021). Characterisation of oxygen defects and nitrogen impurities in TiO2 photocatalysts using variable-temperature X-ray powder diffraction. Nature Communications, 12, 1.

    Article  Google Scholar 

  57. Emeline, A., Kuznetsov, V. N., Rybchuk, V. K., & Serpone, N. (2008). Visible-light-active titania photocatalysts: the case of N-doped TiO2s-properties and some fundamental issues. International Journal of Photoenergy, 2008, 1.

    Article  Google Scholar 

  58. Finazzi, E., Di Valentin, C., Selloni, A., & Pacchioni, G. (2007). First principles study of nitrogen doping at the anatase TiO2(101) surface. The Journal of Physical Chemistry C, 111(26), 9275–9282.

    Article  CAS  Google Scholar 

  59. Barolo, G., Livraghi, S., Chiesa, M., Paganini, M. C., & Giamello, E. (2012). Mechanism of the photoactivity under visible light of N-doped titanium dioxide. Charge carriers migration in irradiated N-TiO2 investigated by electron paramagnetic resonance. The Journal of Physical Chemistry C, 116(39), 20887–20894.

    Article  CAS  Google Scholar 

  60. Xiong, L.-B., Li, J.-L., Yang, B., & Yu, Y. (2012). Ti3+ in the surface of titanium dioxide: generation, properties and photocatalytic application. Journal of Nanomaterials, 2012, 13.

    Article  Google Scholar 

  61. Kumar, C. P., Gopal, N. O., Wang, T. C., Wong, M.-S., & Ke, S. C. (2006). EPR investigation of TiO2 nanoparticles with temperature-dependent properties. The Journal of Physical Chemistry B, 110(11), 5223–5229.

    Article  PubMed  CAS  Google Scholar 

  62. Malakhova, I. V., Ermolaev, V. K., & Paukshtis, E. A. (2000). The radicals generation in the methanol oxidation on a Pt-containing catalysts. Influence of support acidic properties. Journal of Molecular Catalysis A: Chemical, 158(1), 439–442.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We kindly acknowledge funding by University of Ferrara, FAR 2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandra Molinari.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 511 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samiolo, L., Amadelli, R., Maldotti, A. et al. Comparative visible-light driven selective oxidation to aldehydes of phenylmethanol (benzyl alcohol) and 4-pyridinylmethanol (4-pyridinecarbinol) on N-TiO2 and some commercial TiO2 samples. Photochem Photobiol Sci 20, 1635–1644 (2021). https://doi.org/10.1007/s43630-021-00137-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-021-00137-4

Keywords

Navigation